


Page 2 of 40 RETROMAGAZINE ENGLISH YEAR 1 - ISSUE 0

EDITORIAL
Welcome to our first international issue!
RetroMagazine is a well underway project started in 

October 2017 by a small group of Italian retrocomputing 

enthusiasts.

Yes, we know, there are many magazines dedicated to 

retrogames and they are gorgeous; so why the need for an 

additional homebrew fanzine? 

How many times reading those publications have you felt 

that something was missing? There are lot of nice pictures 

and a good variety of games, but... where is the code? 

Where are the explanations of programming techniques? 

Where is the real experience of the end users?

The idea behind our project is to reproduce the same 

feeling as the glorious magazines back in the day. 

Magazines like Amstrad Computer Users, Bit, Compute!'s 

Gazette, Input... They all taught tons of pimply boys the 

basis of coding on their home computers! Those magazines 

used to contain a good balance of programming examples, 

hardware insights and game reviews. 

In memory of those magazines we adopted the shape of a 

PDF fanzine, instead of a more modern blog or website, to 

fully revitalize the spirit of the good old times. 

Do you remember the feeling while awaiting for the next 

issue? We want to recreate that and also give a second 

chance to anybody who missed out on learning these 

things as a kid.

We created a virtual editorial board to give shape to our 

dreams. Every decision concerning the life of 

RetroMagazine is discussed there, where everybody's 

opinion counts because we are driven by the same passion. 

We have already released 22 issues in Italian and they have 

been well received by the Italian retro enthusiast 

communities. 

Now it's time for another big step for RetroMagazine. As I 

said at the beginning of this editorial, this is our first 

international issue. Being a homebrew project we could not 

really afford for professional translators and we don't have 

the time to translate our works ourselves; this is a hobby, 

we also have jobs and families! This is the reason why it 

took so long before publishing the first issue completely in 

English. 

The number you virtually hold in your hands is a pilot 

edition. As I wrote in my first Italian editorial, we need you. 

If you like our work, then let us know and if you want to 

contribute, well, the door is open!

So, have a nice read of this special zeroth issue! 

I hope you'll find it interesting and fun as we did when 

working on it.

Francesco Fiorentini

SUMMARY

◊ The best version of BASIC

◊ Don’t ever buy a Vectrex!

◊ The .d64 format – part 1

◊ Interview with Gideon Zweijtzer

◊ Sinclair QL: mistakes, misfortune and so 

many regrets

◊ Cyrus (ZX SPECTRUM) VS. Colossus 

(ATARI 800XL)

◊ HIBERNATED 1 (Amiga/C64)

◊ CIVILIZATION (MS DOS)

◊ THE PAWN (All platforms)

 

Page 3

Page 6

Page 11

Page 16

Page 20

Page 30

Page 33

Page 34

Page 37 

People involved in the preparation of this issue

•  Robin Jubber

•  Francesco Fiorentini

•  David La Monaca

•  Alberto Apostolo

•  Gianluca Girelli

•  Leonardo Giordani

•  Giorgio Balestrieri

More credits

•  Graphic support: Irene G. Valeri

•  Cover: Flavio Soldani

•  Page setting: Francesco Fiorentini, Marco Pistorio

•  Proof-reading: Francesco Fiorentini, David La 

Monaca, Robin Jubber, Giorgio Balestrieri, Alberto 

Apostolo

DISCLAIMER ABOUT THE ENGLISH VERSION OF 

RETROMAGAZINE

SOME OF THE FEATURED ARTICLES/CONTENTS WERE 

ORIGINALLY WRITTEN IN ENGLISH BY THEIR 

RESPECTIVE AUTHORS. THE OTHER ARTICLES HAVE 

BEEN AUTOMATICALLY PARSED BY MODERN 

TRANSLATION ENGINES AND THEN REVIEWED AND 

PROOF-READ BY MEMBERS OF THE EDITORIAL STAFF.



RETROMAGAZINE ENGLISH YEAR 1 - ISSUE 0 Page 3 of 40

SOFTWARE

For a great many games coders, especially the older 

generation of this young industry, the BBC User Guide, 

explaining the BBC BASIC language, was our Bible. I have 

two or three original User Guides in my house, just in 

case I lose my primary copy. They’re all falling to pieces 

after thirty years of service.

I’m a games programmer in my 40s, and like almost every 

games programmer in their 40s, my first introduction to 

programming began with BASIC. Every 8-bit micro from 

the mid-70s onwards had a variation of this influential 

language built into the hardware, with varying degrees 

of implementation success. Since those days I’ve been 

lucky enough to program in C and C#, unlucky enough 

to program in languages like C++ and PHP and cursed 

by the gods themselves to dabble in the horror shows 

that are Objective-C and Lisp. And those aren’t even the 

worst languages out there. Some of the languages I’ve 

coded in no longer exist, or were exclusive to one company 

or even one game. Others, like C, have declined a little in 

popularity over the years, but still influence all the new 

languages, by lending familiar syntax to platforms like 

Java and C#. But long before I encountered pointers, 

classes and memory management, I, like all my 

contemporaries, started coding in Beginners All-purpose 

Symbolic Instruction Code, a language first invented more 

than half a century ago.

Microsoft cornered the BASIC market for a long time, 

with the version that Bill Gates and Paul Allen created for 

the Altair in around 1975. This 8K language rom ended 

up in many flavours of machine back in the 70s and 80s, 

including Apple, Commodore, IBM, Tandy, Atari and CP/

M computers. Despite its primitive nature, the implementation 

was a safe bet for garage companies building kit computers 

and even established hardware manufacturers turned to 

Microsoft. MS Basic was in essence the bedrock for the 

entire Microsoft company we know today. 

Not every computer manufacturer subscribed to the MS 

monopoly of course. My first exposure to any form of 

programming was struggling to construct simple Basic 

programs for the Sinclair Spectrum at school. Sinclair 

Basic was a pretty poor version of the language, due in 

no small part to being limited by the Spectrum’s one key 

input system and unsophisticated editing environment.

The Spectrum’s hateful rubber keys were also a profoundly 

limiting factor. Try typing in a Spectum program using 

the original keyboard – it’s shockingly difficult. Other 

manufacturers were also experimenting with their own 

versions of the language, for instance Atari Basic for the 

XL, Wozniak’s Basic for the Apple II and Tiny Basic, which 

somehow fitted a functional version of the language into 

just a couple of kilobytes. 

Luckily for me my first personal computer was a BBC 

Micro – a truly remarkable machine that dominated the 

UK education market but saw only limited success outside 

these islands. I have to assume my dad sold a kidney to 

The best version of BASIC

by Robin Jubber

The official BBC User Guide A typical UK primary classroom of the 80s

The BBC Micro home computer



Page 4 of 40 RETROMAGAZINE ENGLISH YEAR 1 - ISSUE 0

SOFTWARE

pay for the machine. That was fine by me as long as I got 

to play Elite and shoot some Thargoids.

The BBC Computer Literacy project was designed by the 

UK’s public broadcasting corporation to introduce both 

children and adults to the brand new world of home 

computing that was opening up at the start of the 1980s. 

Part of the literacy project involved finding a computer 

manufacturer who could build an all-purpose machine 

that would spearhead the television programs associated 

with the project. A number of manufacturers, primarily 

in the UK, raced to build a machine that would become 

the official BBC microcomputer. Acorn Computers, which 

had started a few years earlier in Cambridge, would 

become the eventual winner, due in no small part to the 

powerful and comprehensive version of BASIC incorporated 

into the machine. The BBC wanted a language that could 

do everything, would be well structured, and allow users 

to access the huge array of specialised input and output 

systems on the machine.

The language was designed and implemented by Sophie 

Wilson (Roger Wilson at the time) - a British computer 

scientist who would go on to have an unparalleled career. 

Sophie Wilson is a name to remember – she was one half 

of the team that went on to design the ARM RISC processor, 

which initially sold as a coprocessor module for the BBC 

Micro. The ARM chip can be considered a pretty impressive 

legacy of the BBC Micro, with more than 100 billion 

manufactured. There are probably two or three right next 

to you now, hidden in every conceivable electronic device 

on your desk. One of the stated aims for the ARM chip 

was to run BBC BASIC at the same speed the original 8-

bit micro could run assembler. It’s fair to say Sophie 

Wilson knocked that objective out of the park. The ARM 

was fast. BBC Basic V, the version she made for the 

Archimedes range of machines, would entirely fit inside 

the cache of later ARM chips ensuring main ram was rarely 

accessed by the interpreter. This of course made a very 

fast language even quicker and was one of the reasons 

so many multitasking desktop apps on the Archimedes 

could easily be written in BASIC instead of C or assembler.

I actually had a couple of commercial games on the Arc 

released that were almost entirely created in BBC Basic 

V back in the day. The games themselves may not have 

set the world on fire, but to be able to write full screen 

games using an interpreted language wasn’t something 

you could do on any other machine.

Sophie Wilson based her version of BASIC on Atom Basic, 

from an early Acorn machine, along with key changes 

brought in from languages like COMAL and Pascal. These 

included proper structural programming features – most 

notably functions, procedures, repeat loops, if-then-else 

construction and an assembler built directly into the 

language. These features were remarkably forward thinking 

at the time and certainly ensured that young programmers 

lucky enough to have access to an Acorn machine were 

well served when they started computing courses and 

needed to understand proper structure. It may help 

explain why the UK had such a presence in the early 

computer games industry as BBC Micros were available 

in pretty much every school in the country.

On other machines you couldn’t really write complex 

BASIC code without using GOTO and GOSUB commands. 

These were hard coded jumps in the codebase that forced 

execution to move to a new area of code. However they 

made the code inflexible and hard to maintain or understand. 

GOTO does have its place in programming, especially in 

error trapping, and isn’t quite the code villain it has 

traditionally been painted, but it’s a very low-level 

command. GOTO essentially acts like a branch instruction 

in assembler, forcing the processor to jump to a new 

memory location. The big problem is that just by looking 

at a line like 10 GOTO 90 you’re none the wiser about 

what you might expect to find at line 90, which would in 

turn have to jump elsewhere with another GOTO. This 

leads to spaghetti code and a coding style that doesn’t 

extend well to larger projects. With BBC Basic, the GOTO 

and GOSUB commands were entirely unnecessary. You 

could instead write PROC_Draw_Square or FN_Root(10), 

which makes the code far easier to parse and modify. 

I still use BBC Basic today, especially when I’m writing a 

side project for an older machine like the Vectrex. I can 

have a BBC emulator running on the desktop to use as a 

scratch pad for simple coding experiments or generating 

look up tables in a format the Vectrex will understand. I 

have even used BBC Basic to generate table data for 

Sophie Wilson – designer of BBC Micro and ARM chip

A screenshot from GLoop (Archimedes)



RETROMAGAZINE ENGLISH YEAR 1 - ISSUE 0 Page 5 of 40

SOFTWARE

games running on much more powerful hardware, such 

as the PSP – it’s just a handy tool to have lying around.

The editing environment is as powerful and easy to use 

as I remember from the 1980s and I would strongly 

recommend fans of 8-bit machines load up JSBeeb (written 

by a friend of mine called Matt Godbolt, another coder 

who got started on BBC Basic) to get a taste of what 

programming in this very immediate environment felt 

like. Not only could you copy sections of the screen into 

new lines, you also had trace functionality, sophisticated 

line renumbering tools, the aforementioned assembler 

that could be called from within BASIC (and use BASIC 

functions and constants) and complete control of the 

BBC Micro graphics capabilities. Other versions of Basic 

had no graphics or sound commands, with PEEK and 

POKE required to drop values into individual areas of 

memory and trigger chip functionality. It is fair to say 

that BASIC on the C64 was barely useable, which meant 

many aspiring young coders of the era were denied access 

to the Commodore machine’s impressive graphics and 

sound chips. 

BBC Basic has had a storied history, ending up on Amstrad, 

Sinclair, Windows, Archimedes and Texas Instruments 

platforms to name a few.  It’s even still doing actual work, 

when almost every other version of BASIC (with the 

honourable exception of Visual Basic) has long since 

disappeared. A couple of years ago my brother, who ran 

a sweet shop at the time, was having trouble with his 

Point of Sale machine. I took the computer apart, loaded 

up the code that was crashing, and discovered to my 

amazement it was running a modern version of BBC Basic.

Needless to say that made it particularly easy to fix. It 

also means that somebody out in the business world is 

still getting away with writing commercial software using 

a language he first learnt as a child. That unknown coder 

is my kind of hero.

JSBeeb – an amazing online BBC emulator

Elite - the BBC Micro's most famous game

External links

• Acorn Computers

https://en.wikipedia.org/wiki/Acorn_Computers

• BBC Basic

http://www.bbcbasic.org

• Microsoft Basic

https://en.wikipedia.org/wiki/Microsoft_BASIC

• Tiny Basic

https://en.wikipedia.org/wiki/Tiny_BASIC

• Elite per BBC Micro

https://en.wikipedia.org/wiki/Elite_(video_game)

• Sophie Wilson

https://en.wikipedia.org/wiki/Sophie_Wilson

• JSBeeb: online Acorn BBC emulator

https://bbc.godbolt.org

• Antigrav, one of  Robin's games for Archimedes

http://www.apdl.org.uk/apdlpd/library/files/g/
g131.zip

•  Fred The Needle, another Robin's game fully 

written with BBC/Electron's BASIC

https://jubberbbcmicro.webnode.com/fred-
theneedle/

• Chip ARM's history - from Acorn to Apple

https://www.telegraph.co.uk/finance/newsbysector/
epic/arm/8243162/History-of-ARM-from-Acornto-
Apple.html 

https://en.wikipedia.org/wiki/Acorn_Computers
http://www.bbcbasic.org
https://en.wikipedia.org/wiki/Microsoft_BASIC
https://en.wikipedia.org/wiki/Tiny_BASIC
https://en.wikipedia.org/wiki/Elite_(video_game)
https://en.wikipedia.org/wiki/Sophie_Wilson
https://bbc.godbolt.org
 http://www.apdl.org.uk/apdlpd/library/files/g/g131.zip
 https://jubberbbcmicro.webnode.com/fred-theneedle/
https://www.telegraph.co.uk/finance/newsbysector/epic/arm/8243162/History-of-ARM-from-Acornto-Apple.html


Page 6 of 40 RETROMAGAZINE ENGLISH YEAR 1 - ISSUE 0

SOFTWARE

Don’t buy a Vectrex. Sure, without one your console 

collection is just a bunch of plastic landfill, and yes, it’s 

the greatest console of all time; but still. Don’t buy a 

Vectrex. I bought one and now I have three. This vital 

information has been withheld from the girlfriend, and 

because her Italian is as bad as mine, she may never find 

out, god willing. I also ended up with a stack of expensive 

homebrew, a ton of wonky peripherals and I recently 

wrote a game – well, 14 games – for the machine and 

now my house is full of packaging, soldering irons and 

plastic carts. I’ve become a home based manufacturing 

company – I should have bought a Neo Geo like a sane 

person. 

If you’re unfamiliar with the Vectrex, don’t feel bad. 

Certainly it means you’re not a proper console collector, 

know nothing about retro gaming and shouldn’t be reading 

this magazine but on the other hand, your bank balance 

probably isn’t a giant smoking hole in the ground. The 

Vectrex is a rare and unusual beast. It’s the only non-

portable with an integrated screen. It’s the only console 

that uses vectors instead of pixels. It’s one of a few select 

consoles where a second controller is almost as expensive 

as the console itself (that’s why I bought the third machine, 

honey). It has colour graphics, but only in the weirdest 

possible sense. It was the first console with a 3D headset. 

Every one comes with slightly wonky graphics, but in a 

manner unique to that machine. It makes a weird buzzing 

noise even with the volume at zero. Opening it up for 

repairs can literally kill you. It has a carrying handle of 

sorts, presumably so you could take it very, very carefully 

to your friend’s house but the carrying handle is incomplete 

and sort of sloped, so dropping it is a strong and expensive 

possibility. It was only in production for about a year and 

a half. It has around 800 bytes of ram. It is, without doubt, 

the greatest console of all time. 

The first thing you’ll notice is the screen. Essentially an 

old black and white CRT on its side, the vector display is 

like nothing else out there. The simple line-based graphics 

pop out from the screen in a way that cannot be replicated 

by an emulator. Your 8 gig graphics card cannot make 

graphics like this. Older readers may have played the 

original vector Star Wars in the arcades – this is essentially 

the same technology, squeezed into something that sits 

on your desk. Because the graphics are so unusual, and 

don’t use pixels at all, my second mistake was to try 

writing a little code. Perhaps I could get a simple triangle 

up on screen. That could be fun. Then I’d get back to 

writing proper games on machines with millions of kilobytes 

of ram instead of not quite 1. A little searching on the 

internet turned up a few snippets of information, such as 

Christopher Tumber’s 1998 text file that helps with some 

aspects of the machine and 6809 assembler. You’ll also 

need as09, for turning code into binary, and ParaJVE, a 

not entirely accurate or finished Vectrex emulator. It’s 

also possible to write your code to eeprom and test it that 

way, but you’ll die of old age before you get Hello World 

world up and running. There is also, incredibly, a full 

development environment created by a lovely chap called 

Malban, but I didn’t want to bother with that – this was 

just meant to be a quick experiment after all. But we’ve 

already established I may be an idiot. 

The 6809 that sits at the heart of the machine is a wonderful 

cpu. It really only turns up in embedded systems, the 

Vectrex, the Dragon 32 and the TRS-80. And that’s a 

shame. The architecture is big endian, which means a lot 

of 16-bit maths is easier for humans to understand. Little 

endian, which turns up in rival 8-bit cpus, is more convenient 

for simple logic units to handle a byte at a time, which 

keeps manufacturing costs down, but doesn’t make for 

such readable or intuitive code. 

For a supposedly 8-bit cpu, the 6809 is also very 16-bit 

capable. It has two 8-bit registers that combine to create 

a 16-bit word, along with a host of other 16-bit registers 

and instructions. Most of the code you write will be 8-bit, 

the usual business of comparing small values and looping 

over small data structures – but when you need to write 

some fixed point maths, the 6809 really comes into its own. 

For my first experiment, a simple Pong clone, this wasn’t 

all that important. By the third game, a simple Spacewar 

clone, it had become vital to making smooth movement. 

Don't ever buy a Vectrex!

by Robin Jubber

The original Vectrex game console



RETROMAGAZINE ENGLISH YEAR 1 - ISSUE 0 Page 7 of 40

SOFTWARE

Essentially you don’t want to be restricted to integer 

mathematics – you can then only move discrete numbers 

of units per frame – and as the Vectrex only understands 

256 units vertically and horizontally, that would mean 

your minimum movement rate would cross the screen in 

just a few seconds. So you use 16-bit values, and treat 

the first byte as the actual coordinate, and the second 

byte as the fractional part. Very easy with a 6809. 

The problem with writing a simple Pong clone is that I 

still had about 25K of rom space free. Obviously I could 

have just released the binary file and got on with the day 

job, but by now I was hooked on understanding what the 

Vectrex could do and learning a new language. Plus 

Joanna, my baby daughter, had just turned up out of 

nowhere so I was essentially on self-imposed paternity 

leave. So I wrote another game. And another. Then I 

shuffled memory around a bit, noticed some routines 

were being used all over the place and found some more 

spare rom space. So I wrote another game. 

At this point the original 32K rom, which is all the Vectrex 

can address, was getting close to the limit, so my four or 

five simple games would end up on the internet and I 

could move on, having scratched a programming itch. I’d 

also mentioned my Vectrex adventures to some other 

ancient programmers who’ve been making games since 

the dark ages and they were very jealous. No compile 

times. No producer leaning over my shoulder. No gently 

explaining to simple minded artists why their artwork is 

all broken and useless. Just raw assembler, written directly 

to the metal – proper game coding like we used to do 

when men still lived in caves. 

At this point things took a turn for the worse. I discovered 

that some clever coder had figured out how to do bank 

switching on the Vectrex. You could have 64K of code and 

data, provided you were very careful about how it was 

initially laid out. If the first chunk of instructions are the 

same for both banks, you could send a signal to a magical 

place in the Vectrex hardware, and switch to bank 2. Or 

back again. Using the same technique, you could also 

write to a 32 character eprom, in effect giving the Vectrex 

save and load capabilities. Well, obviously I had to have 

some of that. Another 32K to play with? This could become 

a compendium of two player games. 

Two player games have a couple of distinct advantages 

to the lazy incompetent coder. Firstly, the Vectrex simply 

doesn’t have much in the way of two player gaming options, 

despite two joypad ports. Many games can be played with 

alternating players, but if you want to show off your fancy 

new Vectrex to a baffled friend, you need proper simultaneous 

two player. 

The other advantage is that I wouldn’t need to write much 

in the way of artificial intelligence. And to think, my 

computer science teacher worried I didn’t have the right 

mindset to be a programmer. What a fool! Sure, if I had 

done things his way I’d be writing database software for 

a bank and driving around in a Lamborghini, instead of a 

13 year old BMW that likes to shut down in the middle of 

the road for no apparent reason while everybody points 

and laughs. But I wouldn’t get to make spaceships move 

around on screen, so it’s a fair compromise. I think.

By now I was up to 6 or 7 games, including my first properly 

complicated bit of code, for a single screen worms-style 

artillery game. Next came a basic stock car game, played 

from overhead and then Tron. The Vectrex is all about 

lines so Tron seemed a natural fit. In theory. The unusual 

thing about the Vectrex is that it has no persistence. 

Nothing you draw stays on screen for more than a frame 

– everything has to be redrawn 50 times a second, 

completely. Nothing else works like this, although modern 

3D games essentially have to address the same issue. 

You have 30000 cpu cycles to get everything drawn and 

Drawing shapes with a Vectrex

The Vectrex in action!



Page 8 of 40 RETROMAGAZINE ENGLISH YEAR 1 - ISSUE 0

SOFTWARE

then the entire process has to start again as the previous 

frame’s lines fade quickly from view. 

The Vectrex draws graphics in the style of an oscilloscope 

– the electron beam leaves a trail but it doesn’t persist 

for long. The scaling of the lines you draw also introduces 

delays and text is especially hard. The OS routines for 

displaying text are not fast, and grow increasingly distorted 

the more letters you display. Your 30,000 ticks are 

constantly under pressure. With Tron I couldn’t write the 

game in the usual manner, by adding a pixel to the head 

of the snake, and simply deleting a pixel from the tail. 

Instead I had to store all the lines, including the special 

case of lines that are longer than 128 units (the maximum 

on the Vectrex) and also keep extending the line forwards 

as the player moves around the screen.

This set of lines then had to be packaged up to the OS as 

a complete vector image, so it could be drawn instantly, 

for both players. Well, no problem – I have a few hundred 

bytes free, if I wipe over ram that is used by other games 

but which Tron doesn’t need. That meant the missile 

system, the explosion system, the block based collision 

system, the particle system – they can all be repurposed. 

I just need a collision system that handles line intercepts 

and a giant queue to handle the line ends. Also two of 

everything because there are two players. Oh my god that 

is some ugly code – but it works. 

But still – all that rom code left to fill. And I had better fill 

it fast or my daughter will have left for university by the 

time this cart is done. So I took the Spacewar code, added 

gravity, and built a series of caverns for the two ships to 

navigate. A co-op game on the Vectrex! With 100 rooms! 

Those 100 rooms nearly killed me – level design is soooo 

tedious, but eventually it was up and running. 

I won’t bore you with the critical bugs, the realisation 

that saving and loading also force a bank switch, the 

easter eggs I added which nearly broke everything and 

the amount of data shuffling needed to fit 5 translated 

languages into the cart. I also had Malban look over the 

code - “it’s very good for a first game, but you probably 

shouldn’t have written something this large and here are 

all the things wrong with it” - where he went through 22 

thousand lines of assembler looking for places where I 

incremented a loop instead of decrementing it (saving, 

1 or 2 bytes) or loaded two registers separately instead 

of one (saving 1 byte). The man’s a mad genius and I’m 

not ignoring help like that – it all adds up. Bytes and clock 

cycles are precious when you’re coding in the past. Malban 

also helped me understand the relationship between the 

scale of vectors and their drawtime, which was invaluable 

for getting the menu system to run without dropping frames.

So the game is done, except for the hidden Black Vector 

screensaver which I wrote at the last minute, and the 

hidden message to my girlfriend (because every girl 

dreams of getting a feeble apology delivered on antique 

hardware) and the other hidden features I add because 

I can see some free bytes just lying around doing nothing. 

Now I’m up to 14 games, 6 screensavers, 10 utilities, 6 

game settings, 5 languages, 11 alternative versions for 

the main games, 3 bits of hidden seasonal DLC and I get 

that twitchy feeling when the project is finished and you 

want to write some more code but there’s nothing to write 

and nowhere to put it anyway!

And that’s just the start of my problems. Right now I’m 

a manufacturing hub because to make a Vectrex game 

properly you need to create carts, burn roms, solder 

components onto pcbs, you need to find somewhere that 

can make boxes, you need to make some artwork, write 

manuals and their translations (many thanks to all who 

helped with that), draw posters for that proper 80s feel, 

edit a web page and that’s before you even get to packaging 

everything up and talking to all your customers. 

I also had to find a friendly plastics manufacturer and 

carefully explain what a Vectrex is, and why I need a 

colourful two layer piece of polycarbonate with a pretty 

pattern on it. My first step towards all this was buying a 

3D printer in order to make carts. Test cart 1 looked like 

that bit in Judgement Day where the T-1000 is trying to 

reform after Linda Hamilton blasts him with a shotgun. 

My next attempt resembled the special effects from the 

sci-fi classic The Thing. I’m a coder – I don’t know anything 

about plastics! Now I buy my carts from America where 

it merely costs all the money.

So hopefully this will give you a slight idea why you 

shouldn’t buy a Vectrex. 

I’m serious. You have no idea what you’re getting yourself 

into. Even if it is, without doubt, the very greatest console 

ever made. 

Vectrex Technical Addendum

Here are the minimal steps for Hello World.

1) Download as09.exe from http://www.kingswood-

The Vectrex 3D Imager helmet

www.kingswood-consulting.co.uk/assemblers/


RETROMAGAZINE ENGLISH YEAR 1 - ISSUE 0 Page 9 of 40

SOFTWARE

consulting.co.uk/assemblers/ or try VIDE by Malban, 

which has an assembler built in.

2) Choose an IDE. I initially went with Visual Studio and 

created a rule in Tools -> External Tools. Add a new 

external tool and call it Vectrex Assembler. For Command 

enter C:\Wherever\as09.exe and for Arguments use –q 

$(ItemFilename). Tick Use Output Window and leave the 

other options blank. You will also want to add a keyboard 

shortcut, usually found in Options, to execute this external 

tool on the current file. I use F6, but your tastes may vary. 

Of course you can skip all this and just use VIDE, which 

has buttons to compile assembler into 6809. 

3) Run your code. As09 will output a bin (binary executable) 

file which you can load with ParaJVE, a Vectrex emulator. 

ParaJVE can also handle bank switching, but not save/

load – although these are features most Vectrex games 

do not use or need. Again, VIDE has an emulator inside 

the IDE, and it’s more accurate for spotting framerate 

and draw problems. 

4) Write some code. Each Vectrex game has a header, 

which will be displayed by the OS on bootup. After that 

header is where your code begins. Here’s an example.

5) Become addicted to 6809 assembler and watch your 

social life disintegrate. 

Some handy hints for Vectrex development I wish I knew 
beforehand. 
• The OS routines for printing strings will fail with no 

explanation if your string is just one character long. You 

won’t have a clue why.

• The longer a string, the more distorted it will become.

• In many cases it is better to scroll a string than display 

it as one page of text. 

• When designing graphics, for instance in Blender, try 

and make your vector sprite as large as possible – generally 

to fill the screen – then scale it down to display it. The 

smaller the scale of a vector list, the less cycles it will 

take to display. There are subtle aspects to this guidance, 

but in essence this is a good rule of thumb. 

• ParaJVE draws as if running on a magically perfect 

Vectrex. No such beast exists in the wild. 

• Any attempt to save or load will cause a bank switch. 

Have all your eeprom, initialisation and bank switching 

code in identical locations in their respective banks.

• Don’t worry too much about writing super efficient 

assembler, except inside critical loops. Vector redraw is 

going to be your framerate killer, unless you’re doing a 

lot of 3D maths. In modern parlance, you’re most likely 

to be GPU bound.

• On the 6809, most instructions, for instance loads, will 

also affect the status flags. 

• This page has a summary of the OS commands and the 

registers destroyed after jumping into these subroutines 

http://www.playvectrex.com/designit/chrissalo/bios.htm 

- which is why a and b will no longer hold their values 

after moving the beam.

• When using the joysticks, you have to turn their respective 

features ‘on’ – for instance movement in x and y, and 

analogue control. If you don’t need these facilities, leave 

them off and you will save a bit of cpu time. 

• Before displaying text at the start of the frame, perform 

a move, otherwise the text will not show up. 

• Going back to 6502 or Z80 will *hurt* after coding this chip.

VIDE - Vectrex Integrated Development Environment

http://www.playvectrex.com/designit/chrissalo/bios.htm
www.kingswood-consulting.co.uk/assemblers/


Page 10 of 40 RETROMAGAZINE ENGLISH YEAR 1 - ISSUE 0

SOFTWARE

; Define some OS routines we will need
OS_Intensity_7F equ $F2A9 ; sets the intensity of drawing to maximum
OS_Intensity_A equ $F2AB ; this version uses the a register
OS_Wait_Recal equ $F192 ; Vectrex BIOS recalibration
OS_Print_Str_D equ $F37A ; BIOS print routine
OS_Reset0ref equ $F354 ; Call frequently to avoid wobble
OS_Move equ $F2FC ; move to location specified by regs a and b
OS_Draw equ $F3DF ; draw by amount in registers a and b
; some assembler directives (optimise and start of code in memory)

opt
org 0

;***************************************************************************
; HEADER SECTION
;***************************************************************************

db "g GCE 2018", $80
dw $FF8F ; address of a (BIOS ROM) tune
db $FC, $30, $20, ­$58 ; height (negative), width, rel y, rel x
db "JUBBERNAUT", $80  ; game title. db sets aside some bytes in ram
db 0 ; end of game header
;***************************************************************************
; GAME
;***************************************************************************
Main
jsr OS_Wait_Recal ; start of draw cycle
jsr OS_Intensity_7F ; set the intensity of the beam ­ 7F is max

Draw_A_Line
jsr OS_Reset0ref ; Reset the beam

lda #30
ldb #­64

jsr OS_Move ; Move to ­64,30 (a and b are y and x)
lda #0
ldb #125
jsr OS_Draw ; draw a horizontal line (0 units in y, 125 in x)

Write_Some_Text
jsr OS_Reset0ref

lda #0 ; OS_Draw corrupts registers a and b
ldb #­60
ldu #MESSAGE ; load the 16­bit U register with the string

jsr OS_Print_Str_D ; call the OS print routine 

Draw_Another_Line
jsr OS_Reset0ref  

lda #­30
ldb #­64
jsr OS_Move
lda #0
ldb #127
jsr OS_Draw

Main_End
bra Main ; and return to the start of the game

MESSAGE db "ROBIN IS SKILL!",$80
; the Vectrex font is capitals only. 
; Some punctuation and special symbols
; are also supported.

Listing 1 - 'Hello World' (...or  'Robin is skill!') in assembly  Motorola 6809 



RETROMAGAZINE ENGLISH YEAR 1 - ISSUE 0 Page 11 of 40

SOFTWARE

If you have ever used a Commodore 64 emulator, you 

may be familiar with the D64 format. Using a D64 file in 

an emulator is quite easy: pick up the file, load it into the 

emulator and then use it as a normal C64 floppy disk in 

a real 1541 Disk Drive. The emulator will take care of the 

file and treat it as a real ‘physical’ C64 floppy disk.

Nothing really fancy so far, we are all used to work with 

emulators… but if you are still reading this article, it 

means you want to know more about the structure of a 

D64 file and how it works. Additionally, since a D64 is the 

physical representation of a 1541’s single-sided disk in 

a file format, knowing its structure you can easily understand 

the functionality of a real Commodore 1541 Disk Drive. 

So let’s start our journey.

During the formatting process, the 1541 DOS (Disk 

Operating System) organizes the disk surface in tracks 

and sectors. The sectors will be used to store information. 

The formatting creates a total of 35 concentric tracks, 

starting from 1 (the outermost one) up to 35 (the innermost 

one), then each track is divided into a variable number 

of sectors. Why is there a difference in the number of 

sectors per track? Does this mean the disk rotates with 

a different speed based on the header’s position? Not 

really, the disk always rotates at a constant speed of 300 

rpm (round per minutes), the difference is provided by 

varying the clock rate at which data are written on (or 

read from) the disk. Every disk is divided in 4 areas with 

a different clock rate. 

Without overcomplicating our article with tedious math 

calculations, the 4 different clock rates do generate 4 

different areas containing a number of sectors per track 

(see Table 1).

Doing a quick sum of all the sectors of each area we get 

to know that the total number of sectors in a disk is 683. 

Every sector is 256 bytes long and it contains, other than 

the stored data, a header to identify the sector itself.

By multiplying 683*256 we get the value of 174848 bytes 

which is theoretically the total storage capacity of a 

diskette formatted with a 1541. By dividing 174848 by 

1028 (1k) we get 171KB which is exactly the size of a 

D64 file as shown by the host file system. But, wait a 

minute... Why did we use the word ‘theoretically’? Because 

the 1541 DOS reserves some space for itself. This space 

will be used to store data regarding the organization and 

management of the information contained in the disk (for 

example to keep track of which sectors contain data and 

which ones are still empty, the disk’s directory name and 

the amount of free space on the disk, etc.). The 1541 

DOS uses the track number 18 to store this information, 

thus reducing the available space for user data to 169984 

bytes, corresponding to 664 tracks (683-19) multiplied 

by 256 bytes. 

So, let us have a deeper look at the information stored in 

the track 18!

BAM - Block Availability Map

The BAM or Block Availability Map is the place where the 

1541 DOS keeps track of the used sectors (the ones that 

already contain data) and of the free sectors (the ones 

still available to store new data). The BAM is stored in the 

The .D64 format - part 1
by Francesco Fiorentini

1. Graphical representation of a 1541 disk (image from 

the book ‘Inside Commodore DOS’)

Table 1: Areas, tracks, sectors and clock rate



Page 12 of 40 RETROMAGAZINE ENGLISH YEAR 1 - ISSUE 0

SOFTWARE

first sector of the track 18. For convenience, I have included 

here below the hexdump of the first part of the BAM (firsts 

144 bytes) of the abacus cobol.d64 disk (please be aware 

that this is exactly the hexdump of my disk image, your 

disk image could be different).






































Still for convenience, to increase its readability, I have 

divided the above hexdump in groups of 4 bytes. The first 

number is the number of the track, whereas the number 

at the right is the absolute position in the disk of the 

fourth byte.

The first 4 bytes at position 00: represent respectively: 

the pointers to the track and sector of the first directory 

in the disk (hex 12/01, dec 18/01), the ASCII char A 

(hex 41, dec 65) which identify the disk format (in this 

case 1541) and an unused byte (00). What does this 

information mean? It simply means that the directory 

chain of this disk starts exactly at the track 18, sector 1. 

Let us keep this information away for now. We will come 

back here later.

The next 35 groups of 4 bytes store a schematic 

representation of the free/busy space on the disk for 

every single track. Now the level of complexity increases 

a little bit but I will try to make it simple.

In this specific example, I have decided to use the 

information contained in the track 18, because even if 

the disk is empty (but formatted) it will contain data.



The first byte (hex 10, dec 16) indicates the amount of 

free sectors in the track. The next 3 bytes indicate the 

map of space allocation for every sector of the track (in 

this specific case 19 sectors, see table 1). Storing the 

information using 1 byte for each sector would have been 

inefficient, so it was chosen to store this information in 

binary format: 0 means the sector is free, 1 means the 

sector is occupied. This explicitly means that we need to 

transform the data from byte (hexadecimal) to bit chunks 

(binary).

Firstly, we need to convert the values (EC FF 07) in binary 

format: 

EC = 11101100

FF = 11111111

07 = 0111

If we put them in a single line, we will get 11101100 

11111111 0111

Secondly, knowing that the bits are stored from the less 

significant to the most significant ones (little endian), we 

need to turn them all over (byte after byte…).

00110111 11111111 1110

The 3 bytes will look like:




Finally, keeping in mind that 0 means the sector is free 

and 1 that the sector is occupied, we can count the 

occurrences of “1” values in the string. The result is 16, 

exactly as indicated by the first byte. Additionally we 

immediately notice that only the first, the second and the 



RETROMAGAZINE ENGLISH YEAR 1 - ISSUE 0 Page 13 of 40

SOFTWARE

fifth sectors contain data, the others sectors are free 

(empty). Wait a moment, the track 18 contains only 19 

sectors (see table 1), what are we supposed to do with the 

“0” on the 20th position?  We can simply ignore it because 

the 1541 DOS will not take care of it.

Here below all the 35 tracks of my abacus cobol.d64 disk. 

O=Free sector, #=allocated sector:






































In the Table 2 there is the meaning of each byte of the first 

part of the BAM.

Is the BAM completed? Almost, but at its end there are 

other 27 significant bytes which contain useful information. 

Let’s have a close look at them in Table 3.

All this information can be read and displayed converting 

the Hex value in the corresponding PETSCII char (for 

convenience, in the example attached below I used the 

ASCII instead. It is almost fully compatible with the only 

exception of some special characters).

The Directory chain

Now that we have finished reading the BAM, we need to 

print out the list of the files contained in the disk. Where 

is this information stored? It’s still on the track 18, but 

since the Disk Drive 1541’s engine runs at 300 rpm in 

order to optimize the performance the 1541 DOS distributes 

the directory chain in a non-contiguous way among the 

sectors. 

In general the directories in a disk are distributed following 

the sectors’ sequence below:

0 (BAM), 1, 4, 7, 10, 13, 16, 2, 5, 8, 11, 14, 17, 3, 6, 9, 12, 

15, 18.

Bear in mind that this is just the standard distribution. 

During my tests, I have found out that most of the disks 

follow this structure, but I also found some exceptions. 

How can we avoid errors given by the exceptions? Easy, 

we just need to follow the indications provided by the disk 

Table 2:  First part of the BAM

Table 3:  Second part of the BAM - Disk name, Disk ID, 

version



Page 14 of 40 RETROMAGAZINE ENGLISH YEAR 1 - ISSUE 0

SOFTWARE

itself and disregard the above distribution!

The only certain information we know is that the pointer 

to the first directory in the disk is located in the first 2 

bytes of the track 18; if you remember, we kept this 

information away in the first part of the article: 12 01 41 00.

Well, that information tells us that the first directory is 

located in the sector 01 (the second byte) of the track 

18. From there onwards every directory will contain in its 

first 2 bytes the pointer to the next one. Therefore we just 

need to follow the bread crumbs and we won’t get lost... 

hopefully! So let’s follow them until we won’t find in those 

2 bytes the values (hex 00/FF, dec 00/255) indicating 

that we reached out the last allocated directory in the 

disk (see Table 4).

Now that we know how to follow the directories, we just 

need to read the information contained which will represent 

the file name, the file format, the file size and the position 

where the file data are stored in the disk (at least the 

beginning of the file).

This information is contained in 30 bytes with the following 

structure (see Table 5).

Nothing really complex, except for the DOS File type that 

needs to be converted using information in the Table 6 

(see below) and the file size which needs to be calculated 

keeping in mind the LO/HI byte method (little endian).

What does ‘LO/HI bytes’ (little endian) really mean? It 

means that, in order to calculate the file size, we need to 

sum the leftmost byte (low-byte or the less significant) 

+ the rightmost byte (high-byte or the most significant) 

* 256. In this way the 1541 DOS can save precious bytes 

to store information (don’t forget, they were designed in 

the 80’s and every byte counts).

The resulting formula therefore is: file size = lo-byte + 

hi-byte * 256

Let us have an example with the data as in Figure 2. 

The values are 21 00, then using the above formula:

Table 4: Directory structure

Table 5: file directory description

Table 6: DOS file type



RETROMAGAZINE ENGLISH YEAR 1 - ISSUE 0 Page 15 of 40

SOFTWARE

File size = 33 (21) + 0 (00) * 256 

In total: 33 used blocks on disk by the file named “C1 TEST”.

As you may have easily understood, the track 18 of the 

D64 and consequently of the 1541 diskette format is the 

starting point to access the information contained in the 

C64 disks. Why this specific track and not for example 

the first one or the last one? 

I bet because the track 18 is located exactly in the middle 

of the disk and starting from there the DOS can quickly 

access every other track optimizing the read/write 

performance with just a short movement of the header. 

Smart decision by the designers, indeed.

I hope I have been able to provide enough information 

on the D64 file format and on the basic functionality of a 

real 1541 disk. With this little knowledge, everyone should 

be able to create its own utility to read the basic data 

from a D64 file. In case of questions, you can contact me 

or anyone else in the RM team. 

During the writing of this article, I took the opportunity 

to code a simple Visual Basic 5.0 program just to validate 

the correctness of the information provided. 

The source code and the binaries can be download from: 

http://www.retromagazine.net/getrm.php?id=d64 

The logic of the program is quite easy. It opens a D64 file 

in binary mode and reads every single byte by starting 

from the first byte of the track 18 (the 91393rd byte of 

the file, obtained multiplying the amount of sectors in the 

first area, 657, by 256 and adding 1). Then using the 

information provided by the tables shown in this article, 

the program decodes the data and display them in a text 

field. Hope you like it, it works quite well and it is reasonably 

fast, but of course it can be improved! Maybe you want 

to give it a try. 

You can also download Visual Basic 5.0, released by 

Microsoft in 1991, from Winworldpc.com:  

https://winworldpc.com/product/microsoft-visual-bas/50 

2. The Visual Basic 5 program coded to test the .D64 file format

https://winworldpc.com/product/microsoft-visual-bas/50
http://www.retromagazine.net/getrm.php?id=d64


Page 16 of 40 RETROMAGAZINE ENGLISH YEAR 1 - ISSUE 0

RETROINTERVIEW

Hi, Gideon and thank you so much for accepting my 

invitation for an interview. All the readers and the editorial 

staff of RetroMagazine are very excited to have the 

opportunity to ask you some questions about your 

experience in designing one of the most (if not the most) 

famous cartridge/expansion for the C64: the 1541 

Ultimate. During 2017, according to your web site, the 

final steps of the Ultimate64 design have been completed, 

so the long-awaited board has finally got into production 

and the first batches have been shipped to the final users 

earlier this year.

Most of the Commodore 64 fans out there are well-aware 

of your fantastic products, but I’m pretty sure they don’t 

know how it all began. So let's start from the beginning.

Can you please shortly introduce yourself and tell us 
something about your own story (ie. where you are born, 
growing up, your education, your personal interests, etc.)?

Hi David, thanks for the invitation! Talking about myself? 

Sure... I was born in Amsterdam in 1974, in a quite stable 

family with one older brother. I have always been interested 

in technicalities. Before the home computers came, I was 

always with my technical Lego, although I also loved to 

race around on my bike through the neighborhood. I often 

played with circuits made from switches, motors and light 

bulbs, but unfortunately I did not have anyone in my 

surroundings with knowledge of electronics. From the 

secondary school, I went to the university TU Delft, where 

I studied Electronic Engineering.

I guess you have always been a computer fan and user 
since when you were a kid. What started you on the path 
of computing and what was your first experience with 
a computer? Was the Commodore 64 your fist computer?

I was pretty young when we got an Atari 2600 game 

console. It was actually my brother who had started with 

the whole computer thing and he started to investigate 

the possibilities for programming. There was a basic 

interpreter for the A2600 at that time, but in the end he 

bought a ZX81. I was not really allowed to touch it, but 

sometimes I sneaked into his room and tried a few things, 

but as a kid without any help, I didn’t get that far. Later, 

my brother got a Commodore 64 and this got big. It was 

so popular in that time! Computer clubs, meetings, copying 

games and programs! My brother infected me with his 

curiosity about programming and although he didn’t want 

me to bother him, I could sit on the floor in between his 

massive desk and the old color TV that was on top of 

another table in front of that. As long as he didn’t hear 

me, I could just watch what he was doing. I saw basic, 

assembler, etc. At a certain point I could tell him from 

behind the desk that he forgot a statement... It was not 

until I reached the age of 11 that I got my own Commodore 

64.

How did you get started working on a C64, beyond playing 
games? Did you quickly find interest in programming 
and discovering how the machine intimately work?

I never really played a lot of games, actually. There are 

some exceptions, like Giana Sisters. But in general, I did 

not spend a lot of time on games altogether. As my brother 

focused a lot on the software, my interest in the hardware 

grew. At a certain point I made a simple thermometer, 

using an NTC thermistor on the paddle port of the C64. 

I needed my older brother again for his math skills to 

figure out the conversion curve. At the computer club in 

Amsterdam, I usually spent my time around the repair 

stand, where I could see how some guys were de-soldering 

and replacing chips in broken C64’s. According to my 

mother, I had the full schematic of the C64 hanging from 

the wall in my small bedroom. But in all honesty, I don’t 

remember that.

After the C64, did you get your first PC and still keep the 
C64 on your desk? Did you ever use one of the many 
SD2IEC devices on the market before starting to design 
the 1541 Ultimate?

No, I haven’t. In fact, I think you’re now skipping quite a 

few years. My interest in the C64 faded as the Amiga 500 

Interview with Gideon Zweijtzer
The man behind the U1541 II+ and the Ultimate 64

by David La Monaca (Cercamon)

Gideon in his living room



RETROMAGAZINE ENGLISH YEAR 1 - ISSUE 0 Page 17 of 40

RETROINTERVIEW

came, and later the PC. Actually my first PC was a Pentium 

120 MHz, so you can imagine that I have resisted PCs for 

quite some time... The love for the C64 never really went 

away, I just never used it. Neither have I ever been part 

of a demo- or game coder group, or the “scene” in general... 

So there was basically never a need for an SD2IEC or any 

other C64 peripheral.

What inspired you to design the first version of the 1541 
Ultimate and when did you start?

The first version of the 1541 Ultimate was made in 2007. 

It all started with some implementations of the 6502 as 

I was learning and getting more experience with FPGA 

design using VHDL. That was back in 2001 or so. There 

were a lot of things going on back then. For instance, Jeri 

Ellsworth was working on her C-One, which later became 

the DTV, if I am not mistaken. In any case, I had already 

done a lot of the C64 in FPGA at that time, but I didn’t 

see the point of being a “me-too” player. So I thought I’d 

do the floppy drive instead. On one of the club meetings 

that we have in Maarssen, I demoed the very first prototype 

on a Xilinx Spartan 3 board. You needed a laptop or PC 

to download a floppy image over Ethernet into its memory, 

after which the board acted as a floppy drive. No menu, 

no other emulations, only the drive.  Later, in a conversation 

with one of my colleagues at work, the idea arose to build 

it into a cartridge, such that the VIC could be used to 

display a user-interface. This idea crystalized in 2007.

Did you design the hardware and the software/firmware 
for the 1541 Ultimate all by yourself?

Yes, basically. There have been some important contributions 

from others over the years, though. But in essence, the 

hardware design, the FPGA design and the firmware design 

and framework are made by me.

What was your computer system setup that you used to 
develop and test the early project of the cartridge?

Just a PC and one Commodore 64... And yes, that did not 

include a 1541 drive! Later it showed that this was not 

enough, but I did not have more hardware, so I visited 

some friends from the Commodore club that had impressive 

collections of machines to test the compatibility with. In 

fact, there I found out that the very first prototype of the 

1541 Ultimate as a cartridge was not very compatible, 

which caused some design changes before the board 

went into production.

Did you take any computer courses to start you in the 
field of electronics? And if so, what were they and how 
much time did you invest? Or, like many designers/
programmers of the early Eighties, were you a self-
taught techie?

Many things were self-taught, although studying at Delft 

University of Technology has made me understand many 

more things. But to be fair, I think that I learned most at 

the job after my studies. I started to work as a junior 

designer at Technolution B.V., and there I learned most 

of the practical knowledge that I have today, in terms of 

electronics design. Interestingly, I brought knowledge 

about FPGA design back as I was one of the founders of 

this discipline within the company. 

What was your development process like? Did you use 
to sketch out concepts, design the mainboard and the 
firmware, etc.? Do you still take on the design process 
the same way?

Oww, that’s quite a difficult question. Because I have 

always seen these activities as a hobby, I mostly just let 

it happen. I am the kind of designer that does a lot of 

design work ‘as a background process’. I am not a very 

structured, method-following, step-by-step kind of 

engineer. (I made quite a few project-managers pull their 

hairs out, as they didn’t see me work on new tasks they 

assigned to me in the first weeks...) I work with iterations, 

basically. But mostly just in my mind. Sometimes under 

the shower, or while driving. Once it ‘feels right’, I start 

to do some implementation. And sometimes after an 

implementation I realize it doesn’t feel as right anymore. 

I am not afraid of just throwing some work away and start 

anew. Of course, always taking into account the lessons 

learned in the previous step.

Talking about your biggest projects (the 1541 Ultimate 
cartridge and the new Ultimate64 mainboard), what 
technical challenge gave you the biggest feeling of 
accomplishment?

Ok, when I need to limit it to ‘technical challenges’, it 

would definitely be the solving of very hard-to-find bugs... 

You know, those nasty ones that make others quit on their 

project... Those! On a second place, it is when I power up 

a new board and everything works right away. (And that’s 

not uncommon in my case... [smug face]).

Close view of the Ultimate 64 v1.1

The cartridge 1541 Ultimate II+



Page 18 of 40 RETROMAGAZINE ENGLISH YEAR 1 - ISSUE 0

RETROINTERVIEW

What was the biggest tech/programming obstacle that 
you ever overcome while designing/producing/testing/
selling the 1541 Ultimate or the Ultimate64?

Obstacles... [thinking]… It depends a bit on how you 

define the obstacles. Most things are just time consuming 

tasks. But yet, I think there are several ‘obstacles’. I think 

in case of the 1541 Ultimate, it must have been creating 

an easy to use user interface without having access to 

any framework; building everything from scratch. On an 

embedded platform, which the Ultimate clearly is, you 

can't use standard frameworks like the ones commonly 

used in Java and C#, so you have to make one of your 

own. Hmm, another obstacle was the development of a 

factory test system for the Ultimate-II+. That took quite 

some time. But then, I do think it saves me a lot of time. 

Another one was the move to a web-shop system, rather 

than just taking orders and processing them manually. 

What was/is your favorite game for the C64? Do you still 
find some time to play?

Giana Sisters... err.. no time to play!

I imagine that you do own a collection of stock C64s 
(i.e. all versions: from C64 “breadbin” with all the ASSY 
board revisions, to C64c, C64g and C128) for testing 
purpose. Are you a collectionist of retrocomputers as 
well, not only Commodore branded?

My wife would kill me, if I were actually collecting more. 

I only have working C64 mainboards, of which I use mainly 

just one in a C64C case. This has been the same machine 

as I used to test over 3000 ultimate’s over the years. The 

power switch and cartridge port are a bit sad now. I do 

have a C128 and a C128D, but I never use them. I do 

have several floppy drives, too. 

Can you even think about calculating how many hours 
you spent designing and working on the several versions 
of the 1541 Ultimate cartridge? What about the Ultimate64?

It is very difficult. As I said, many design activities take 

place as a background task. If I would count only the 

hours that I spend on the PC it might give a falsely low 

figure. What I can tell, tho, is that hardware designs, board 

layouts and such, usually don’t take that much time. I 

think I created the U64 board design in about 3 weeks’ 

time, but then of course only in the evenings and weekends. 

The schematics took a similar amount of time. Most time 

spent on technicalities goes into FPGA design, 

implementation and debug and firmware implementation. 

From your question I sense that you focus a lot on the 

technical aspects, but I can tell you that the administrative 

tasks, including shipping orders and answering e-mails 

takes up most of my time, unfortunately.

Have you ever worked or are you planning to work on 
other projects involving the C64 or even different 8/16-
bit machines?  

Nope... :-)

How many people currently work at Gideon Lab on 
producing, testing and selling the two main products? 
Did you ever work in a team or simply get consulted with 
other electronics/software experts in order to achieve 
a particular result or to solve a bug?

Production is outsourced to a number of companies. 

(Production-) testing of the Ultimate-II+ is also performed 

in the factory. Production test for the U64 doesn’t exist 

yet as of today, but that will be the next step in order to 

accelerate the process. When we talk about assembling 

the U2+ into plastic cases, that’s often done by my wife, ... 

when she feels like it. She also plays an important role in 

packing orders. The other things are done by me; there 

are no employees at this point. Whether this can continue 

like this, is questionable. I think I do need external help 

for the quantity of U64’s that are currently on order. On 

the technical aspect, I sometimes talk with my colleagues 

about certain bugs, and of course I use the feedback and 

input from the community. There are some pretty smart 

guys out there that help me solve bugs sometimes. In 

order to achieve a particular result, I often apply patterns 

that I quietly pick up or learn from other projects.

Looking back to where you started it all, is there something 
that you regret about the PCB design or any other detail? 
Would you do something in a different way now if you could?

I mostly regret not taking the C64 FPGA code that I had 

made years before the U64 to a production level. I actually 

Gideon's logo on the Ultimate 64

The Ultimate 64 installed in a Commodre 64 case



RETROMAGAZINE ENGLISH YEAR 1 - ISSUE 0 Page 19 of 40

RETROINTERVIEW

demoed a complete C64 in FPGA already back in 2011. 

I thought nobody would be interested in buying an FPGA-

based C64 motherboard, since original C64 machines 

could be picked up for almost nothing, or else people 

would use an emulator anyway. Regrets about other 

aspects: well, in retrospect many things could be regretted. 

But I think it is not fair to look at things like that, because 

as a person and as an engineer, you learn while you do 

it. Once you think things have to change, there is always 

the freedom to do so. I think that is one of the very cool 

things about having your own product. But I guess this 

principle applies to many things in life, doesn’t it..?

I’m pretty sure that you worked very hard on both your 
projects during the last few years but also that you had 
so much fun doing it. What is the most funny/weird 
moment or story that you’ve been through while developing 
your products?

Oh, I absolutely had much fun doing it! Technically speaking, 

I have the most fun doing the FPGA code, second the 

hardware itself, and third the firmware. I think one funny 

moment was the moment I realized how naive I can be. 

In the whole process of creating the 1541 Ultimate, I 

*never* thought of actually making a sellable product out 

of it. Or let’s say, that was not my goal; it had always been 

pure hobby until then. It was actually a Swedish scener, 

TwoFlower, who happened to visit the Commodore Club 

in Maarssen just when I was giving the demo of a cartridge 

with an embedded floppy drive. He said I should have it 

produced, but I was hesitant and thought that it was not 

even feasible to do so. He asked me how many needed to 

be produced, and I stammered, “maybe 40 or 50?” He 

smiled and said: “Just do it... I’ll make sure you’ll sell all 

40 of them in Sweden alone!” And that’s how it all started!

Gideon, thank you very much for your time. This interesting 
interview ends here. Would you like to add anything, or 
say anything to our readers?

There is one important thing to mention.. I would like 

express a huge 'thank you' to the Commodore loving 

community. One of the most rewarding aspects of this 

project is the great feedback, the positive words I receive. 

In short: without you guys, I would never have been able 

to do all this. Thank you.

One of the Commodore Club's meetings in Marseen (The Netherlands)

External links

• 1541 Ultimate Cartridge's official site:

http://www.1541ultimate.net/

• Ultimate64 Motherboard's official site:

http://www.ultimate64.com/

The Ultimate 64  motherboard in all its glory!

http://www.1541ultimate.net
http://www.ultimate64.com


Page 20 of 40 RETROMAGAZINE ENGLISH YEAR 1 - ISSUE 0 

              

RETROHISTORY

This article completes the tetralogy on the machines 

produced by Clive Sinclair, started with MK14 (RM 6), 

continued with the calculators (RM 9) and the series of 

ZX computers (RM 11) (At the moment I'm writing they 

are available in Italian language only, sorry).

In 1982 Clive Sinclair started designing the QL: a computer 

for management use more advanced than the newly 

launched ZX Spectrum. The hardware consisted of a 

Motorola 68008 processor with 128 KB RAM and two 100 

KB microdrive readers (not compatible with the ZX 

Spectrum). The SuperBasic and QDOS operating system 

working in multitasking were available on the machine.

In addition, a wealth of application programs made by 

PSION were offered: Abacus (spreadsheet), Archive 

(database), Quill (word processor), Easel (business graphic).

To counter the launch of the Apple MacIntosh, the QL was 

presented early on January 12, 1984 in London, proving 

to be a resounding failure that highlighted the difficulties 

of a company that grew too fast.

The laborious development of the computer, the incomplete 

release with serious delay, the price of £399 were fatal 

for QL and Sinclair Research itself (also exposed in the 

production with very few sales of a flat-panel TV and the 

C5 electric tricycle).

In 1985 he closed Timex (the American manufacturer of 

Sinclair licenses) and went into crisis Prism (the mai 

distributor in the United Kingdom). Now on the verge of 

bankruptcy, Clive Sinclair was forced to sell his products.

In 1986 Amstrad (Alan Michael Sugar Trading, n.o.s) 

purchased the computer branch from Sinclair Research 

for GBP 5 million.

This operation decreed the end of the production of 

Sinclair QL (estimated at about 150,000 copies in total).

Amstrad continued the evolution of the ZX Spectrum until 

1990, producing the +2 and +3 series, despite the presence 

of systems with superior performance such as MSX, 

Commodore Amiga and Atari 520 ST.

Clive Sinclair returned to computer science in 1988 with 

the new Cambridge Computer brand and  ZX-88 battery 

laptop equipped with  LCD display and   Z80 CPU. While 

it made good impressions, it quickly disappeared because 

the market had definitely changed due to compatible PC-

IBM and the demand for higher quality hardware and 

software.

Sinclair QL: mistakes, misfortune and so many regrets
by Alberto Apostolo

The Sinclair QL computer

Sir Clive Sinclair

The Cambridge Z88 portable computer



RETROMAGAZINE ENGLISH YEAR 1 - ISSUE 0 Page 21 of 40

RETROHISTORY

A Late summer dream of a professional computer

In 1981, 36-year-old Robb Wilmot was hired as CEO by 

I.C.L (International Computers Limited, a recently privatized 

British public company). He had previously been the 

youngest vice president of Texas Instruments (he headed 

the Calculators Division). He was also a friend of Clive 

Sinclair and believed that Sinclair technology could 

revitalize the range of office computers.

In addition, Dataskill (a company controlled by I.C.L.) 

already offered programs for the Sinclair ZX81 and had 

produced management software for home microcomputers 

since the time of Nascom 1.

Against this background, an agreement between Sinclair 

and Wilmot was announced in December 1981 as follows: 

(1) I.C.L. would be licensed by Basic Sinclair (a move 

made in response to British public television B.B.C. which 

had adopted the technology produced by competitor 

Acorn), (2) I.C.L. would buy the flat-screen TV produced 

by Sinclair to be combined with a possible office computer 

that could also be used as a communications terminal 

(Sinclair would develop the hardware of such a machine), 

(3) Sinclair would obtain one million pounds to finance 

development costs and would also obtain royalties if the 

machines were distributed to customers.

Between May and August 1981, Rick Dickinson (former 

designer of ZX computers) had produced some sketches 

depicting a keyboard machine, a pair of Microdrives (the 

tape system developed by Sinclair) and a small built-in 

display. Other sketches also showed a built-in printer. 

They were not far from what the One-Per-Desk, the system 

desired by I.C.L., should look like.

In May 1981 the Osborne 1 laptop appeared on the 

market; however, Dickinson's sketches do not give the 

idea whether the computer he imagined was a laptop or not. 

Shortly after the launch of the ZX Spectrum, Clive Sinclair 

stated in April-May 1982 that the next step would be a 

new computer in an appropriate price range higher than 

the Spectrum, based on the same philosophy as Osborne 

1, more manageable than IBM system, weighing 1-1.5 

kg, with a printer and flat-screen TV connection.

David Karlin, hired by Sinclair in the late summer of 1982 

as Chief Project Engineer of the computer division, is in 

charge of developing a project. David Karlin (at the time 

just over twenty) had obtained a bachelor's degree and 

specialization in Electrical Engineering in Cambridge. He 

then spent some time working at the Xerox in Palo Alto 

and the Fairchild Camera and Instrument Corporation in 

Singapore.

During the Xerox period, he had been able to observe the 

Xerox Star and  its W.I.M.P. system (Windows, Icons, 

Menus, Pointer) which had influenced personalities such 

as Bill Gates and Steve Jobs in making their products. 

When he later decided to return to the UK for family 

reasons and seek another job, he was not thrilled to work 

at Cambridge. However, during an interview with Sinclair, 

Karlin had exposed his vision of a £500 Xerox Star system 

and Clive Sinclair had convinced him to take up a job 

(offering him the same salary as Fairchild, which was 

above the UK average at the time).

Great expectations for the ZX83

David Karlin immediately set to work to write the 

specifications of a management machine called ZX83. It 

was meant to be a desktop computer with what he thought 

was the bare minimum: a decent keyboard, some kind of 

network connection, a dedicated monitor, and a printer. 

Interviewed, he said, “In fact, in terms of broad spec, you 

could say I was trying to design what the Amstrad PCW One of Dickinson's sketches

Rick Dickinson in his design studio



Page 22 of 40 RETROMAGAZINE ENGLISH YEAR 1 - ISSUE 0 

              

RETROHISTORY

8256 would eventually become."

It also had to have some sort of window user interface, 

which would require: high-resolution bitmap graphics, 

enough memory and a fast processor.  Intriguingly, he 

did not consider the idea of equipping the system with a 

mouse. A choice that seems strange today but at the time 

he was  fairly confident that people could do enough with 

arrow keys.

Efforts then focused on circuitry with the priority of saving 

as much as possible.

Since the Z80A microprocessor addresses only 64 KB 

and memory paging techniques would have limited its 

performance, including the need for a 16-bit processor.

After the Zilog Z8000 and Intel 8086 were discarded, the 

choice fell on the Motorola 68000 processor series 

considered very good and a great platform for the future.

It was decided to adopt 68008 at 7.5 MHz, about twice 

the frequency of  Z80A used on the ZX Spectrum. Internally, 

it worked 32-bit with an 8-bit data bus and 20 bits reserved 

for addressing.

The 68000 (which will be used on the first Apple MacIntosh, 

the Amiga and the Atari 520 ST) also worked internally 

at 32 bits but with a 16-bit data bus, 24 bits for addressing 

and a cost, at the time, 2-3 times higher than the 68008.

Based on Karlin's recommendations, Clive Sinclair in 

December 1982 approved the use of the 68008, practically 

gambling the future of the company on that platform, 

believing that at that time even the competition could 

not afford to produce a computer based on the 68000.

Unfortunately, in 1983, Motorola cut the price by 68,000 

below the price Sinclair had contracted for 68008.

Renegotiating the contract and adopting the 68000 would 

not have been onerous, but adding the 68000 in the 

architecture would have required extra benches of ROM 

and RAM and a separate chip for the system logic (given 

the evolution of the project, it would have been better 

this way but it is too easy to talk in hindsight).

The architecture of  ZX83 included some chips for ROM, 

64KB  RAM (32KB for programs, 32KB for video memory) 

and two U.L.A. chips (Uncommitted Logic Array) called 

ZX8301 and ZX8302.

The ZX8301 would connect the 68008 to the rest of the 

system; it would function as a processor clock, memory 

timer, and mediator between the 68008 and the display 

controller to access  RAM. The display would be checked 

via a dedicated connection.

The ZX8302 would manage the Input/Output including 

Microdrives, Keyboard , Network, Printer Port. It would 

incorporate a modem (as requested by I.C.L. for the One-

Per-Desk above) and A R.T.C. (Real Time Clock) powered 

by a battery.

In early 1983, after choosing  CPU and defining a basic 

scheme of the system, Karlin began to evaluate the 

machine based on these components and to specify the 

basic software required.

At the same time, Tony Tebby and newly hired Jan Jones 

were commissioned to develop the basic software: the 

operating system and  BASIC Interpreter.

Prior to joining Sinclair in 1982, Tony Tebby was a Physics 

graduate who had learned programming on his own while 

working at G.E.C. on microwave systems. He had done so 

because he thought the software used by that company 

was of little value and had managed to create something 

better. This changed his career, first at Philips and then 

(in 1979) at the Computer-Aided Design Centre in 

Cambridge, a joint venture between I.C.L. Dataskill and 

the British Ministry of Industry and Commerce. It was at  

C.A.D. that Tebby met Jan Jones, a programmer who had 

previously graduated in mathematics while working for 

other companies.

Jan Jones



RETROMAGAZINE ENGLISH YEAR 1 - ISSUE 0 Page 23 of 40

RETROHISTORY

It was Tebby himself who convinced Jones to join Sinclair 

and collaborate on the project to create the SuperBasic, 

a version of the Basic Sinclair enriched with structured 

programming elements that were already included in the 

Acorn BBC's Basic.

Jan Jones had to perform the encoding using the 68008 

Assembler after a lengthy analysis process to define the 

commands with their characteristics.

The intentions were to build the language "inside" the 

machine, not only to program or allow third parties to 

create applications, but also as a shell language for 

"elegant, easy to use and full of functions" operating 

commands. With this, the Sinclair leadership wanted the 

"core"  of ZX83 to become the basis for the future 

"incarnations" of  ZX Spectrum.

David Karlin intended to use Tebby's QDOS called 

"Domesdos". If it didn't work, it would have folded back 

into an operating system built by G.S.T. Computer Systems. 

According to Tebby, on the contrary,  G.S.T.  was contacted 

(without the approval of the Sinclair management) but 

could not finish it in time. However, there are several 

indications that Karlin's version is the real one.

Attempts to involve Digital Research and Microsoft were 

also noteworthy, but their achievements were not good 

for the hardware of the time.

In December 1982, Nigel Searle had contacted potential 

partners to develop the software to be sold with the 

computer. Among  the companies contacted was PSION 

(which will later produce Symbian, a mobile operating 

system). David Potter, was the ambitious director of PSION 

who had understood the importance of management 

software to grow the company and compete with Americans 

in the word-processor and spreadsheet market.

After long discussions, PSION was chosen without involving 

Karlin and Tebby (however, packaging the applications 

with the computer was part of the plans). PSION claimed 

that the QL could support an 80x25 character screen and 

established Quill as a word-processor, Easel as a graphical 

tool, Archive as a database and Abacus as a spreadsheet.

These programs would in future constitute the "xChange" 

suite, a kind of de facto standard for 16-bit computers 

(developing an integrated suite entailed fewer risks than 

developing several "stand-alone" applications).

Each application was entrusted to a team-leader: Martin 

Brown for Easel, Martin Stamp for Quill, Charles Davies 

for Archive, Colly Myers for Abacus (the latter became 

General Manager of PSION and later CEO of Symbian).

PSION programmers will take 15 months to complete 

applications. Without any idea how  ZX83 worked, they 

used a VAX micro-computer with a 68008 emulator until  

ZX83 with  QDOS was available.

The dream soon becomes a nightmare

In March nine months were established as the duration 

of the project, to be sure to launch the product shortly 

before Christmas.

A crazy deadline: Sinclair had never been able to create 

a machine in such a short time and, among executives, 

it seems that only Jim Westwood (Chief Hardware Engineer) 

had highlighted the need to take more time for development 

(without however being listened to). Also, there was no 

clarity in management about what  ZX83 really was: was 

it a laptop or a desktop computer?

In May, Nigel Searle (CEO of Sinclair) called a press 

conference to publicly announce the development of the 

new ZX83 model, stating that it would not be a clone of  

PC-IBM and that Sinclair would develop its own operating 

system.

Moving away from operating systems such as the Digital 

Research CP/M or Microsoft's emerging MS-DOS (which 

were in fact standards at the time) was a real gamble. In 

front of an enthusiastic audience hearing that "Uncle" 

Clive Sinclair was about to place another hit after the ZX 

Spectrum, Searle teased participants with the news that 

Nigel Searle (CEO of Sinclair)



Page 24 of 40 RETROMAGAZINE ENGLISH YEAR 1 - ISSUE 0 

              

RETROHISTORY

the ZX83 could be a laptop with a display based on Sinclair 

flat screen TV technology and solid-state memories.

He also leaked that the car would probably be called QL, 

an abbreviation for "Quantum Leap" and that the launch 

would be scheduled for January 12, 1984 at the Inter-

Continental Hotel at Hyde Park Corner in London. 

The last hopes of having a laptop lasted until the Summer 

of 1983, following the discovery that the batteries produced 

for the Sinclair Microvision 2700 pocket TV would guarantee 

only 30 minutes of autonomy to a laptop (10 minutes 

with the Microdrives connected together) and that a text 

displayed on a Sinclair micro-display (connected for trial 

to a ZX Spectrum) was barely readable.

Putting so many features on only two 40-pin chips had 

proved almost impossible (serial I/O required 8 pins and 

not 4) and the idea of creating a new ZX Spectrum based 

on  ZX83 was quietly put aside between August and early 

September 1983. 

The ZX8302 was not complete and needed to be lightened 

by the keyboard interface. This led to the most controversial 

decision within the project: to include an Intel 8049 micro-

processor in the system logic. The Intel 8049 was improperly 

dubbed the Intelligent Perpherals Controller. It was also 

able to generate sounds and was useful for lightening  

ZX8302 of serial port management.

This resulted in negative side effects. The 8049 had its 

own state registers and Karlin could no longer use a 

centralized bank of state registers and peripheral interrupts 

(a "clever" scheme he devised that allowed him to save 

on hardware costs and simplify software).

So  QDOS could also handle 8049, Tebby called Aaron 

Turner. Although it was hard work, Turner succeeded.

Instead, it was much more difficult to place the 8049 and 

its connecting lines on the long, narrow motherboard, 

derived from the shape of the houselong chosen for the ZX83.

The problem of motherboard measurements got worse 

when there was the move to make  ZX83 more "home", 

also adding a TV output and joystick connections (strange 

accessories for a management micro). The joysticks were 

added thanks to the 8049, while  UHF modulator caused 

large headscratches because it had been placed on the 

right, near the Microdrives and their fragile read/write 

heads, sensitive to the electromagnetic disturbance of 

the oscillator. It was also decided that it would take the 

"classic" departure of the Basic at the time of ignition. 

To make the SuperBasic, Jan Jones had worked hard and 

respected deliveries, but the SuperBasic was not designed 

The electric scheme of the Sinclair QL



RETROMAGAZINE ENGLISH YEAR 1 - ISSUE 0 Page 25 of 40

RETROHISTORY

to turn "over"  QDOS.

Aaron Turner easily adapted the graphics routines of the 

SuperBasic (created by G.S.T. in an attempt to buy time) 

to work through  QDOS Display Manager instead of writing 

directly into  RAM reserved for the screen. He rewrote the 

Interpreter so that he could get/release memory through  

QDOS Memory Manager instead of doing it himself.

Four weeks before Christmas, Tebby and Jones used most 

of the pre-Christmas launch session to test the software's 

interaction with hardware. Tebby decided to "dismantle"  

QDOS and SuperBasic to allow the Interpreter to shoot 

as a special privileged monolithic task. A serious error 

that compromises the integrity of the operating system. 

At the same time, there was still the question of the double 

version of the SuperBasic: one compact and minimal wired 

in  ROM and another larger one loaded through the 

cartridge of a Microdrive (the "minimal" Basic should 

have noticed the "extended" Basic and loaded the 

extensions accordingly). The "fairy tale" of the two Basic's 

would later have caused an unpleasant misunderstanding.

At the end of 1983 it became clear that the  QL was behind 

schedule. The blame was due to doubts about what  ZX83 

was supposed to be and to Sinclair management refusing 

to extend the project's deadline. Deciding that  ZX83 

management platform should be the basis for future 

versions of the ZX Spectrum had not only forced a new 

version of the SuperBasic based on the 68008, but had 

forced Karlin to revise the initial specifications for the two 

ULA chips.

For example, the display controller circuitry in  ZX8301 

needed to be modified to support the existing modes on 

the ZX Spectrum.

The ZX8302 had required a suitable sound generator for 

the machine to produce better sounds and music than 

the ZX Spectrum.

Separately it was decided that it would take too long to 

implement a modem inside  ZX8301 and the modem was 

deleted. Similarly, thededicated output port for the printer 

was deleted, replaced by two generic RS232 ports.

Misleading advertising and the "thriller” about the 
external ROM

The project deadline had been formally modified, moving 

it to the beginning of 1984.

David Karlin and Jan Jones would need another six months 

of work due to the lengths due to continuous revisions 

of the printed circuit boards and test ULAs. According to 

Tony Tebby, they still didn't have a fully functional prototype 

available.

David Karlin should have warned Nigel Searle and Clive 

Sinclair, but the January 1984 deadline for press releases 

had nevertheless been maintained. This state of affairs 

displeased Tebby. The straw that broke the camel's back 

was the announcement (during the presentation) that 

customers would have the machine within 28 days of 

ordering and that orders would be accepted from the end 

of January. Tebby announced that he would leave Sinclair 

when the QL was in production, which happened promptly 

in April.

The computer was offered with 128 KB  RAM at the price 

of £399 plus £7.95 for shipping costs. No mention of the 

64 KB "cheap" version of RAM at the price of £299, as 

PSION applications required more than 32 KB  RAM each.

In the United States (where Searle founded a subsidiary 

of Sinclair in 1980, then operated according to Cambridge 

since 1982) the debut was scheduled for Autumn 1984 

at the price of 499 Dollars. Later, this debut will be 

postponed, putting Sinclair in financial difficulties.

Some observers had a well-founded suspicion that there 

would be delays in delivering the QL. Meanwhile, at the 

end of February, 9000 bookings were recorded, rising to 

13000 at the end of April. Sinclair did not hesitate to cash 

in the sums of money paid in advance.

The rush to launch had created a lack of communication 

within Sinclair: the marketing group knew that the QL 

was equipped with a Basic Spectrum and that there had 

to be a two-phase release. The pre-release documentation 

for printing was scoped from the ZX Spectrum manual. 

But they didn't confront the developers. The result was 

that, having told the world that the QL was sold with a 

full version of the SuperBasic, the company now had to 

provide it. 

The fact that the QL did not have the promised characteristics 

and that customers were exposed financially without 

receiving the computer at all aroused the "attention" of 

the Advertising Standards Authority (British equivalent  

of Italian A.G.CO.M., the Competition and Market Authority, 

n.o.s.).

Clive Sinclair promised that the money paid would not 

be touched and that a "trust fund" would be created until 

the QLs were delivered. Someone contested the fact that 

Sinclair, during the delay in delivery to buyers, still received 

interest on the sums of money paid. Then Sinclair allowed 

the orders to be cancelled, refunding the money. But few 



Page 26 of 40 RETROMAGAZINE ENGLISH YEAR 1 - ISSUE 0 

              

RETROHISTORY

seemed interested in this opportunity.

By mid-March 1984 (eight weeks after the start of 

bookings), no QL had been delivered and the unflattering 

nickname "Quite Late" was beginning to circulate. Officially 

because the completion of  QDOS had taken longer than 

expected and one  of the two ULAs required further 

modifications.

It was also to be considered that the Microdrives for QL 

had taken more than a year to cure various mechanical 

and electronic problems.

A digital circuit called P.L.L. ("Phase Lock Loop") was 

designed to decode the magnetic signal (and also take 

into account changes in the speed of the tape) but this 

circuit had problems recognizing the waveform of the 

Microdrive signal. With the help of Ben Cheese (an engineer 

at Sinclair who was in charge of Analogue Electronics) 

improvements were achieved but still insufficient. The 

unreliability of the Microdrives would have proved fatal 

to the product.

A second deadline for delivering the QL to customers was 

set for the end of April 1984. Finally, on April 30, 1984, 

it was announced that a few dozen QLs would be delivered 

in person by Sinclair employees to the new owners. They 

would get for free  RS232 cable for the printer (which 

cost £15).

What Sinclair's spokesman called a "goodwill gesture", 

angered customers who had to deal with a computer that 

did not mitigate the long wait endured. The June 1984 

issue of "Your Computer" magazine reported that " Shoddy 

finish and unloadable software seems to be the least of 

their problems. ... The Screen Editor can make the system 

crash and the promised Real-Time Clock is missing - along 

with the manuals."

The RTC device will never be implemented because ZX8302 

had to be modified to eliminate a bug regarding access 

to the 68008 bus that occurred during the resets. It was 

easier to eliminate the battery and stop saying that the 

QL had AN RTC.

The QL also had an external ROM (known as a dongle). 

According to official sources, the basic QL software (QDOS 

plus SuperBasic) occupied 40 KB. Too much for one 32-

KB  ROM. Tebby argued that QDOS and SuperBasic were 

already ready to be wired into  ROM since March 1984 

and that there was no need for an external ROM. In 

addition, the QL specifications provided for 64 KB OF ROM 

and the motherboard incorporated 2 slots  for ROM chips 

(which could be 8, 16, 32 KB). But then how were things 

really going?

The Sinclair philosophy was to "deliver" and then "solve" 

problems rather than delay until everything was okay. In 

the case of QL it was perhaps a "political" move to blame 

the software instead of admitting that the hardware was 

not ready. Defective software implies tacitly that a better 

version is being processed while no one is willing to agree 

to buy defective hardware. Obviously the customers 

believed that naive lie and would not blink if Sinclair had 

actually replaced their machines in due course.

Towards the finish line for stepwise approximations

During the first six months of 1984, many other problems 

were solved with hardware updates and many others 

using software tricks.

But not all remedies led to the desired success: for example, 

eliminating a "glitch" that occurred on ZX8301 chip when 

it overheated, had minimized the impact of a bug in the 

use of Microdrives but had "destroyed" networking 

compatibility with the ZX Spectrum Interface 1.

By July 1984, the QLs no longer had the infamous external 

ROM and those leaving the Datatech production lines 

were marked "D06". At the end of the month Sinclair said 

that the LQs with the external ROM would soon be recalled 

for a free replacement of ROM. Old machines would have 

been demolished and replaced by "D06" or newer versions. 

The intention was to stagger the recall of the machines 

and it was not yet known how long the customers would 

Your Computer (June 1984)



RETROMAGAZINE ENGLISH YEAR 1 - ISSUE 0 Page 27 of 40

RETROHISTORY

be without computers. The "recall" began in August and 

was calculated to last 10 days.

At this point a number of codified versions of ROM followed: 

"FB", "PM", "AH". "FB "was the oldest, "AH" was the "final" 

version as a spokesman said in July 1984. According to 

Tony Tebby, the "real" final version was the "JM" tested 

and delivered in March1984 and featured on QLs since 

July 1984 (the others were bug-resolved versions with 

no new additions to the SuperBasic).

A few weeks later, "TB" and then "JS" appeared (after 

which Tebby left Sinclair).

In 1985 there was still the "MG", which formed the basis 

of non-English QLs.

QL delivery to retailers began in Autumn 1984. With the 

new production specifications the version "D14" had been 

reached and the motherboard was marked "Issue6", in 

which an additional TTL chip healed a defect in ULA 

ZX8301. The hardware of the QL was stable enough to 

be considered "1.0". Future construction updates were 

made to improve things not included in the original design. 

The complete QL manual was written by Roy Atherton of 

the Bullmershe College Computer Centre, incorporating 

material produced by the programming staff (consisting 

of Steve Berry of Sinclair and Dick de Grandis-Harnson 

of PSION).

The high frequency oscillator of the TV output had been 

moved away from the left Microdrive head amplifier.

This prevented interference during the reading phase 

that made the drive practically useless. On the drive itself, 

a capacitor was placed in parallel with the head to block 

the disturbance induced by the drive motor. The 80s 

phone style connectors usedfor joystick and serial ports 

were replaced by 9-pin D-Sub, male for joystick ports, 

female for serial ports.

With QL in stores, Sinclair was lucky enough to reboot 

the computer. The TV ad space was packed with commercials 

showing that QL was a cheap alternative to its rivals: IBM 

PC, Mac and BBC Model B (priced from £399 to £1632 if 

you added a couple of floppy drives, a monitor, etc.). On 

the other hand, the QL proposed with the colour monitor 

cost £698.

But the computers were still having problems. There was 

still a fault with the signal generator for RGB monitor 

contained in ZX8301, which could have burned the chip 

if the monitor cable had been disconnected while the 

computer was still on. 

In November 1984, a Sinclair User reporter claimed that 

out of 1000 QLs delivered to Dixons (a household appliance 

sales chain, n.o.s.) only 190 were working well. It was 

said of a shopkeeper who repeatedly tried cartridges with 

Psion programs on QLs to find a combination that could 

be read.

Despite Sinclair's insistent request for support from the 

most famous software houses, the shortage of software 

did not help sales, nor the fragility and instability that 

afflicted the early models released prematurely. A 

spokesperson for the WH Smith chain reported that sales 

at the end of 1984 had been very low. A spokesman for 

the Boots chain was talking about disappointing sales. 

The press estimated that only about 40,000 QL, a fraction 

of the potential catchment area, had been sold.

Finally, at least one of the accessories promised by Clive 

Sinclair (including 512 KB memory expansion, a hard 

disk and a modem) has yet to be seen.

Game Over
In early 1985, David Karlin intended to leave Sinclair to 

start his own business. Tony Tebby had kept his promise 

to resign only when the QL had been in a position to be 

distributed to customers. Jan Jones,  by then expecting 

her first child, resigned shortly afterwards to devote 

herself to her family and her new career as a prominent 

novelist.

However, Nigel Searle managed to convince Karlin to 

remain in the company to manage the production of QL, 

assigned to two companies: Timex and Thorn EMI-Datatech 

and Samsung. As a result, Karlin worked on orders and 

invoices for 12 months, replacing Dave Chatten, appointed 

Managing Director in March 1985 with Bill Jeffrey (the 

latter from Mars Electronic). Thus Sinclair (also due to 

other bankruptcy projects such as the Wafer Scale 

Integration and the C5 tricycle) found itself in financial 

Alan Sugar showing a ZX Spectrum +2



Page 28 of 40 RETROMAGAZINE ENGLISH YEAR 1 - ISSUE 0 

              

RETROHISTORY

trouble.

In the summer of 1985, it looked like tycoon Robert 

Maxwell was willing to take it over by paying £12 million. 

But thanks to a massive  booking by Dixons, Clive Sinclair 

managed to overcome the crisis. 

In Sinclair there were rumours of a new version of QL and 

the development of a 128 KB ZX Spectrum with Spanish 

capital. The new QL 2 management machine (codename 

"Enigma" or perhaps "Tyche") should have had a Gem 

graphical interface and supported PSION's "xChange" suite.

The QL 2 project was cancelled in April 1986 with the sale 

of Sinclair Research to Amstrad for GBP 5 million, less 

than half of what was estimated in the previous summer. 

The new owner, Alan Sugar (who hated Psion, by the way) 

cut the QL in favor of PCW 8256. Many staff from Sinclair 

were made redundant (including David Karlin himself, 

who will move on to other entrepreneurial initiatives).

A total of 139,454 copies of QL were built, of which 

122,793 by Thorn EMI Datatech for the British market 

and 16,661 by Samsung for Europe and the United States.

In 1985 I.C.L. One-Per-Desk had already arrived at the 

price of £1195 (after a presentation in November 1984). 

This machine won a Recognition of Information Technology 

Achievement in the System Innovation of the Year 

competition in January 1986. A reflection of the victory, 

awarded to the QL in July 1985, of the Microcomputer of 

the Year award of the British Microcomputer Awards. Sign 

that someone had seen potential in the QL, but never fully 

realized (mainly for incorporating faulty Microdrives).

Despite the adversities, many people still wanted to 

continue to fight. In Stevenage, David and Vic Oliver owned 

Cambridge System Technology, which sold accessories 

for QL. Together with technician Graham Priestley, they 

built the Thor computer with the QL motherboard made 

by Samsung. The QDOS had been modified to handle one 

or two floppy disks. The two configurations cost £599 

and £699 respectively.

Adding a 20 MB SCSI hard drive, the price went up to 

£1399. The specialized press immediately named him 

the "son" of the QL.

Amstrad obstructed its initiative by prohibiting the use 

of the QL name and QL components. An attempt was made 

to acquire the license from Amstrad but there was a clear 

refusal. PSION was more accommodating and licensed 

C.S.T., its Danish partner DanSoft and its British distributor 

Eidersoft for its four popular application programs.

C.S.T. succeeded in convincing Samsung to produce a 

compatible kit. He also managed to present the Thor 20 

version in some exhibitions between 1986 and 1987, 

avoiding interference from Amstrad. It was even believed 

that it had a certain number of buyers, but in any case 

they were too few to guarantee the production that ceased 

in 1988.

Meanwhile Tony Tebby was designing a second generation 

QL with Jonathan Oakley (also former Sinclair technician). 

They founded QJump, a company that produced software 

dedicated to QL. They had also found financiers but, when 

it came to it, the latter werenot willing to allocate the 

£250,000 required by Tebby to create a finished product.

However, Tebby will always remain tied to the QL world 

by offering accessories for QDOS and SuperBasic. 

He also produced a version of QDOS called SMS2 for the 

I.C.L. One-Per-Desk

The C.S.T. Thor computer



RETROMAGAZINE ENGLISH YEAR 1 - ISSUE 0 Page 29 of 40

RETROHISTORY

Atari ST (which had the 68000). SMS2 later became SMSQ 

for the Miracle System QXL, an accessory for PCs with 

the 68000.

Conclusion

Mistakes and unfavourable circumstances have made 

Sinclair QL a failure. But not all evil comes to harm. 

Excellent users of QL include Linus Torvalds (the inventor 

of Linux), who has never been mysterious about learning 

to program on a QL. Other companies analyzed the history 

events of QL and benefited from it by trying not to repeat 

the same mistakes. 

For fun, we sometimes talk about Sinclair QL. With some 

contact at University of Cambridge, Clive Sinclair could 

get a reliable Unix operating system to customize it without 

wasting time. Architecture should have had a couple of 

floppy-disk drives instead of those horrible Microdrives. 

With the Operating System and SuperBasic on diskettes, 

instead of being wired into ROM, fixing errors would have 

been easier and buyers would have endured bugs in 

exchange for increasingly up-to-date versions.

All you had to do was to mount a safe outlet for a monitor 

and then sell an external adapter and you could also use 

a TV. Good idea to use two  RS232 ports and maybe make 

sure to expand the system by adding other devices to 

connect through the slot (for example a joystick interface 

or a modem). Bad idea to sell it with only 128 KB instead 

of immediately supplying all 640 KB. If the QL had also 

cost GBP 599, the enthusiasm for Sinclair was such that 

many people would still move from ZX Spectrum to QL. 

Finally, the supreme market blow would have been to 

equip the QL with a ZX Spectrum emulator, capable of 

still using the enormous amount of games produced at 

the time. But, as they say, it’s just talk…

Appendix

In Italy the Sinclair QL was presented on 20 February 

1984 at the Hotel Michelangelo in Milan by Charles Cotton 

(Business Manager Sinclair) and was sold for the price 

of 1,300,000 Lire. He was greeted with curiosity ("MC 

Microcomputer" n.28, March 1984, www.issuu.com), then 

revealed a disappointment as evidenced by the reviews 

on "MC Microcomputer" n.31 (June 1984) and n.32 (July-

August 1984). A similar situation can also be found in 

"Sinclair Computer", the "institutional" magazine of the 

Sinclair world in Italy (see nos. 2,3 8,9,11 and then the 

headings started from 14 to 19 before the merger in the 

magazine "Personal Computer" in January 1986).

Nowadays, looking on the Internet you will find numerous 

web pages, sites on the subject and events organized by 

fans' clubs. For example, on October 14, 2018, the 15th 

Italian Sinclair QL Meeting was held in Modena.

Here are some interesting links to learn more

1) www.sinclairql.it managed by Davide Santachiara,

2) www.sinclairql.net/chronology.html of Urs König (with 

a history of the vicissitudes of the QL),

3) www.dilwyn.me.uk of the mythical Dilwyn Jones (where 

there is the section "QL Emulators" from which to download 

the QL emulators),

4) sinclairql.speccy.org/archivo/docs/docs.html (a page 

in Spanish full of useful manuals in pdf format),

5) http://www.archeologiainformatica.it, an article by 

Stefano Paganini and Carlo Santagostino of Jan. 6th, 2014,

6) https://archive.org/details/sinclaircomputer, all issues 

of Sinclair Computer,

7) https://issuu.com/adpware, where you will find all the 

issues of MC MicroComputer magazine.

Bibliography

[AK86]  I.Adamson, R. Kennedy, "The decline of Uncle Clive", New Scientist 1512 , 12  June 1986, pp.33-36.

[Lea16] T. Lean, "Electronic Dreams: How 1980s Britain Learned to Love the Computer", Bloomsbury 

               Publishing, 2016.

[NS84]  AA.VV., "Sinclair's latest computer is faulty", New Scientist no. 1411, 24 May 1984, p. 5.

[Smi14] T. Smith, "Sinclair's 1984 big shot at business: The QL is 30 years old", 

                https://www.theregister.co.uk/, accessed October 29, 2018.

[Sto18] AA.VV., "Sinclair QL: l'inizio del declino e l'arrivo di Amstrad", 

               https://www.storiainformatica.it, consulted on October 29, 2018.

https://www.theregister.co.uk
https://www.storiainformatica.it
http://www.sinclairql.it
www.sinclairql.net/chronology.html
www.dilwyn.me.uk
sinclairql.speccy.org/archivo/docs/docs.html
http://www.archeologiainformatica.it
https://archive.org/details/sinclaircomputer
https://issuu.com/adpware


Page 30 of 40 RETROMAGAZINE ENGLISH YEAR 1 ­ ISSUE 0

GAME TESTING

CYRUS (ZX SPECTRUM) 
VS.

COLOSSUS (ATARI 800XL)
Man vs Computer and 
Computer vs Computer

Cyrus Chess vs Colossus Chess, or 

Richard Lang versus Martin Bryant. 

Who are these gentlemen? 

They are two British programmers 

who, in the late 70s and early 80s, 

specialized in programming 

software able to play chess with 

enough strength to put even good 

ranked players into trouble. The 

history of many logic and 

electromechanical machines 

dedicated to the 'noble game of 

chess' is not recent, as it dates 

back to the beginning of the 

twentieth century. 

Over time, notable names in 

information technology such as 

Von Neumann, Turing, Wiener, 

Zuse and Shannon have also been 

involved in building computers and 

developing specific algorithms. The 

challenge of beating humans at 

this charming game has always 

been an excellent application 

ground for mathematicians and 

computer scientists (see also David 

Levy's famous bet, who in 1968 

betted that no chess computer 

would beat him within 10 years).

To date, the "battle" between man 

and machine is basically over. The 

machines, or rather the chess 

engines have prevailed over the 

best human players in the world 

for at least fifteen years. Engines 

developed in the traditional form 

have now achieved their peak and 

programs such as Stockfish, 

Houdini and Komodo easily exceed 

the most valued human champions 

by about 600 ELO points. 

On paper it is actually an abyss. 

The current "human" world 

champion is the Norwegian 

Magnus Carlsen, followed closely 

by Italian American Fabiano 

Caruana (up to two years ago he 

used to play for the Italian 

Federation, then he joined the 

USA), the "U.S." players Nakamura 

and So, the Russians Mamedyarov, 

Karjakin, Kramnik and Svidler, the 

Indian Anand, etc.) and everyone 

of them has been using software 

engines for some years now to 

train themselves as well as to 

"learn" their style of gameplay. 

For some months now in chess 

software industry (and more 

generally in strategy games) what 

is happening is a real Copernican 

revolution: the algorithm based on 

Artificial Intelligence called 

AlphaZero, developed by 

DeepMind, an AI company 

controlled by Google, not only has 

been able to repeatedly beat the 

world champion of Go, but has 

brilliantly defeated the best chess 

engine Stockfish in a challenge out 

of 100 games held last December 

2017 (results: +28 =72 -0, that is 

28 wins, 72 draws and 0 losses). 

AlphaZero, in just 4 hours of 

training playing against himself, 

has "learned" to play and then 

smashed Stockfish v8 with 25 

victories and 25 draws with the 

white pieces and 3 wins and 47 

draws with the black pieces. An 

unexpected and, to say the least, 

sensational achievement in the 

world of chess engines, which 

breaks new barriers in AI software 

applied to problems similar to 

complex games such as chess.

Chess and home computer: 
the protagonists

Let’s now have a look to our 



RETROMAGAZINE ENGLISH YEAR 1 - ISSUE 0 Page 31 of 40

GAME TESTING

times the title of World Champion 

in its category. In 1994, Chess 

Genius even won a quick game (25 

minutes for each side) against the 

then world champion Garry 

Kasparov. Since 2002, Lang has 

been managing his small company 

that sells Chess Genius for various 

platforms, PDAs and smartphones, 

including the Android version. Lang 

recently stated that even today 

many of his original ideas and 

techniques used in Cyrus still live 

in his current releases.

Martin Bryant began 

experimenting with his first chess 

program in 1976, released under 

the name of White Knight, which 

was initially developed in Pascal 

and then brought to Assembly 

6502 for the Apple II. His early 

version of the engine won the 

European Chess Championship for 

Microcomputers in 1983, a year 

later after Cyrus. 

White Knight was released in two 

versions for BBC Micro and Acorn 

Electron and its main feature was 

to calculate and display the 

strongest variant in a given 

position, the so-called "Best Line" 

function, which later became a 

common feature in all chess 

programs. 

White Knight's algorithm was used 

by Bryant as a basis to develop the 

whole Colossus Chess series since 

1983, with titles and versions for a 

large number of 8/16-bit platforms 

of the 80s, including Amiga, Atari 

ST and IBM PC. In 1985 the 

magazine Zzap!64 awarded 

Colossus Chess the prize of “best 

chess program” for the home 

computers. Later Bryant never 

stopped improving his engine and 

his commercial releases under the 

name of Colossus Chess. The 

latest versions date back to 2008 

when "Colossus 2008b" was 

released.

The challenge

Cyrus and Colossus are both easy-

to-use chess software with quite 

intuitive user interfaces. To start 

playing against the computer with 

White you just make the first move 

or access the advanced commands 

beloved retro-computers. In the 

early 80s, with the advent of home 

computers, programmers like Lang 

and Bryant were hired by the 

emerging commercial software 

market to develop their successful 

algorithms on 8-bit machines. We 

can appreciate their results in two 

chess programs that we have 

selected for a match/review on 

these pages. Yes, we have made a 

little research to determine which 

of the two algorithms was the 

strongest at the time, comparing 

two of their best implementations: 

Cyrus Chess on Sinclair ZX 

Spectrum and Colossus Chess 3.0 

on Atari 800XL.

Richard Lang began his career as a 

specialist programmer in January 

1981 after thoroughly studying a 

book of Dan and Kathe Sprackler 

about one of the first algorithm 

named Sargon. That book even 

provided a source code in 

Assembly Z80. So Lang worked 

hard and found new ways to 

improve the theoretical scheme 

Sargon was based on, not only to 

make it faster but also to 

implement more advanced 

techniques and a more efficient 

system to evaluate positions 

reached on the chessboard. 

His first release, Cyrus, won the 

second European Chess 

Championship for Microcomputer 

held in London in September 1981, 

with 5 wins out of 5 games played. 

Lang was immediately offered a 

contract by Intelligent Software 

(which was founded by David Levy) 

and Cyrus Chess for ZX Spectrum 

was his first commercial title. Lang 

later moved on to port Cyrus to 

several platforms on behalf of 

Intelligent Software and in 1983 

he moved on to the new Psion 

program for the 68000 processors, 

whose first release was the version 

for Sinclair QL. 

In 1985 Lang collaborated in 

porting the Psion engine to the 

famous Mephisto series of 

chessboard computers that, 

together with its software version 

called Chess Genius, dominated 

the scene of dedicated 

microcomputers from the mid-80s 

until the early 90s, winning several 

OUR FINAL SCORE

Cyrus IS Chess - Intelligent 
Software Ltd / Richard Lang - 
1983 - ZX Spectrum 16/48K

Gameplay 75% - The user 

interface provides simple 

usage of the keyboard and the 

graphical representation of the 

chessboard is good enough to 

play only with the help of the 

screen. The game is 

reproduced in all its rules (en-

passant, draw for repetition of 

moves, rule of 50 moves, 

playing finals, etc.). With 

several game levels available 

Cyrus is a valid opponent still 

today (the playing strength is 

estimated at around 1650-

1750 ELO points).

Longevity 90% - For chess 

enthusiasts there is no end to 

the number of good level 

games that can be played on 

your ZX Spectrum. The engine 

effortlessly tackles all the most 

played openings and variants.



Page 32 of 40 RETROMAGAZINE ENGLISH YEAR 1 ­ ISSUE 0

GAME TESTING

for Colossus, 1 for Cyrus, 1 draw). 

Colossus proved to be much more 

robust and held a good but solid 

style throughout the match. Cyrus 

got off to a good start by winning 

the first challenge with the white 

pieces but lost the next 3 matches, 

yet showing some original ideas 

when attacking its opponent and 

even using pure strategical tricks 

to stay even during the games. 

Both engines diverted quite early 

from the canonical lines of the 

openings, but in the middle game 

Colossus' conservative technique 

prevailed at last. The games 

averagely lasted for about 40-50 

moves and the only draw came for 

repetition of moves. 

As the engines don’t feature the 

option to abandon a game in case 

of manifest inferiority of material 

or position, the win or the draw 

have been manually declared (the 

software which was winning would 

have however come to checkmate 

the opponent). All 6 matches of the 

match are available on request in 

PGN format.

It was  fun to play and test the 

strenght of the programs selected 

for this challenge. And it's amazing 

to see  how these little home 

computers, with their reduced 

memories, can still cope with many 

skilled human players, such as 

myself! 

by David La Monaca

to change the level of play, play 

with Black, rotate the chessboard, 

set up a different position, 

customize colours and so on. To 

that respect, Cyrus on ZX 

Spectrum is more intuitive than 

Colossus as it always displays the 

game options. These commands 

can be accessed by pressing 

alphabet keys, whereas Colossus 

needs to press a CTRL-<key> 

combination to activate the game 

features. Both programs feature a 

graphical display of the 

chessboard that lets the user play 

a whole game using the screen 

only (at that time many players 

held a real chessboard next to the 

computer in order to replicate the 

played moves).

The match between the two 

programs was played by setting an 

equal game level for both of them 

in terms of play strength, with the 

same number of seconds allowed 

per move. 

The emulators used to run both 

chess programs (Spectaculator 

and Altirra under Windows) have 

been set to recreate the stock 

conditions of the two home 

computers: a 48K ZX Spectrum 

48K and an Atari 800XL. 

The challenge was set in 6 games 

at a constant rate (30 seconds per 

move) and each software played 3 

times with the white pieces and 3 

times with the black pieces. Here is 

the outcome of the clash between 

these two historic chess programs: 

Colossus 4.5 - Cyrus 1.5 (4 wins 

OUR FINAL SCORE

Colossus Chess 3.0 - English 
Software Co. UK - 1984 - Atari 
400/800 XL/XE

Gameplay: 80% - The 

program offers a wide range of 

game levels, customizable to 

create a large number of 

combinations. An essential but 

effective representation of the 

chessboard allows you to 

check out the moves and the 

reached position at a glance. If 

you want to access the many 

commands available, you need 

to take a look at the manual. 

All rules of play are respected 

and the playing strength is 

around 1750-1850 ELO points.

Longevity: 90% - The same 

ratings expressed for Cyrus 

Chess are valid for Colossus. 

This engine was and still is a 

good opponent for amateur 

and ranked players. Surely one 

of the best, if not the best, 

chess engine for Atari and all 

the 8-bit machines of the 80s, 

very adaptable and with a high 

level of customization.



RETROMAGAZINE ENGLISH YEAR 1 - ISSUE 0 Page 33 of 40

GAME TESTING

Almost a year ago, in the Italian version 

of RetroMagazine, we published a in-

depth insight into this game by Stefan 

Vogt and Pond Software. Back then 

the choice was made to “only” review 

the unboxing of the physical edition, 

since the game is a text-adventure 

and, as such, it is kind of difficult to 

review visually. That physical edition 

was just way too good to go unnoticed 

since it basically contains formats 

and media for anything in the late 

80s/early 90s: tapes (yes, tapes!), 

5.25" and 3.5" floppies, and even a 

Micro SD card, just in case you were 

out of physical disk drives to try the 

game on and you were in need of 

using an emulator.

As Tony wrote back then, it is sure 

difficult to write about a text adventure, 

but I recently finished this game and 

thus I simply had to report back. 

Actually, in the last couple of years, 

I did write about text-adventures, 

namely Zork and Leather Goddesses 

of Phobos, but this is the first time 

that I review a C64 game (meaning 

that I played it on a real C64, but that 

was just my personal choice).

I think that the best choice here is to 

let the author speak, so here are his 

words: "Have you ever dreamed about 

a journey far beyond the known regions 

of the universe? Hibernated 1: This 

Place is Death is a science-fiction text 

adventure for C64, ZX Spectrum, 

Amstrad CPC, Amiga, Atari ST, and 

PC DOS. It is the first interactive story 

of an epic trilogy centered around 

Olivia Lund, who has been sent on an 

interplanetary exploration mission 

by the Terran Alliance. After being in 

hypersleep for more than 200 years 

and with more than 800 light-years 

being traveled, her ship, the Polaris-

7, crosses paths with a gigantic alien 

vessel and is captured by a tractor 

beam. Olivia soon finds out that this 

may not be her only problem. There 

is no communication and there are 

no signs of life. 

The extra-terrestrial  spacecraft   just  

keeps on drifting  through the cosmic 

void, which is something it seems to 

be doing for thousands of years now. 

This is a tomb in-between the stars, 

which Olivia has to enter to extricate 

herself from this interstellar trap. Io, 

the navigation robot of the Polaris-

7, is probably her only friend. Far 

away from home and surrounded by 

death and decay, she found the answer 

to one of the greatest questions of 

mankind. Are we alone? The answer 

is: yes, out here, we are more alone 

than ever."

The adventure dates back to 2018 

and, one year later, Pond Software 

published an add-on for the game 

(named Eight Feet Under) unveiling 

further details on the story. The game 

is available on itch.io but, despite it 

being a stand-alone product, it is 

strongly advised to play the main 

adventure first, to avoid spoilers. For 

the same reason, I won’t delve further 

into the story, but let me just say that 

a sequel has recently been announced. 

I really can’t wait to play it. What 

about you? Just be patient, and keep 

the flame alive.

by Gianluca Girelli

RetroMagazine has established a 

strong collaboration with AmigaGuru:

https://blog.amigaguru.com/a-look-

at-hibernated-1-all-in-one-edition/

https://blog.amigaguru.com/

hibernated1-review/

HIBERNATED 1
Developer: Stefan Vogt
Publisher: Relics
Year: 2018
Platform: Amiga/C64
Genre: Adventure

https://blog.amigaguru.com/a-look-at-hibernated-1-all-in-one-edition/
https://blog.amigaguru.com/hibernated1-review/


Page 34 of 40 RETROMAGAZINE ENGLISH YEAR 1 ­ ISSUE 0

GAME TESTING

CIVILIZATION
Publisher: Microprose 
Software
Year: 1991
Platform: MS DOS
Genre: Strategy

“Civilization is a game that the 

word ‘GREAT’ could only adapt to if 

it were written in 100-meter-high 

cubital letters on a flashing neon 

on the top of a 50-storey 

skyscraper." With these words, the 

editorial staff of K Magazine Italy 

begins to talk about Sid Meier's 

Civilization in issue 34 of 

December 1991. And reading 

these words brings back to my 

mind the impression I had when I 

started playing this cornerstone of 

video games: immensity.

1991 was certainly not a greedy 

year of masterpieces, although to 

be honest in a crowded field such 

as the video games market, 

probably no year after 1978 was. 

Lemmings, Street Fighter II, Sonic, 

Monkey Island 2, Another World, 

all these titles have marked a 

change of pace in their respective 

genres, both on the technical front 

and playability.

MicroProse, in September 1991, 

emerged with the last effort of Sid 

Meier. The Canadian programmer 

had developed his project together 

with Bruce Shelley, then initiator of 

the Age of Empires saga. Meier had 

already released 22 titles at the 

time, and had made himself known 

especially to F-19 Stealth Fighter 

and Railroad Tycoon.

There is no doubt that Civilization 

is a turning point in the world of 

video games, on many fronts, and 

in fact one of its main 

characteristics is precisely this 

faceted nature. Civilization is a 

wargame, but it lacks a specific 

goal, if we exclude victory by 

"universal conquest". It is a 

diplomatic simulation, but it is 

intertwined with the military 

aspect as the enemies react to the 

presence of our troops on their 

soil. It is also a race for 

technological advancement and 

scientific progress, but they 

depend heavily on how we manage 

cities, as they provide 'brains' to 

our schools and universities. It is 

even a management game, since 

the resources of cities must be 

managed with care to avoid 

problems of famine or production 

stagnation.

It goes without saying that the 

detail with which the individual 

aspects are addressed is less than 

what dedicated simulations  have 

(or will have), such as Sim City, but 

the amount of factors to take into 

account is really high and despite 

this, the game remains extremely 

engaging and fun. This is certainly 

what makes Civilization not only a 

vast game, but a ‘great’ game, 

where the apparent lack of actions 

of the initial settlers turns into a 

universe of possibilities, still 

remaining within the limits of the 

game and avoiding to turn into a 

brain puzzle.

We will find ourselves starting the 

game with a caravan of settlers, 

after witnessing the "cosmic" 

presentation and choosing the 

civilization that we want to 

impersonate, the level of difficulty 

and the geography of the world. 

The game does not yet include the 

concept of ‘fog of war’, limiting 

itself to completely blackening the 

parts of the map that we have not 

visited. At the beginning of the 

game, therefore, we have visibility 

only on the 8 tiles surrounding the 

settlers. If we are lucky enough, 

the game will assign our tribe a 

free technological advance (e.g. 

Technical requirements

The graphics and sound sector are 

certainly not the strong point of 

Civilization, an aspect that the 

subsequent chapters of the series will 

take better care of, but there is no 

great lack of it. The interface is clean 

and tidy and the numerous shortcuts 

that the units provide allow you to do 

most of the work without having to 

navigate between menus or use the 

mouse. This device is still needed to 

fully appreciate the game, but this 

recommendation is not needed in 

2018.



RETROMAGAZINE ENGLISH YEAR 1 - ISSUE 0 Page 35 of 40

GAME TESTING

alphabet or ceramic) and/or an 

additional unit, which in the early 

stages of exploration and defense 

can definitely make a difference.

The game then continues in turns 

when we can move all the free 

units, but there is no rush in 

Civilization. At the end of the shift 

we have all the time to visit the 

cities that we intend to found and 

to monitor their progress, to plan 

production, to strengthen their 

defences. And we will need  to take 

this time, as soon as we begin 

contacting the neighbouring 

civilizations, sometimes eager for 

friendly relations, sometimes only 

eager to see our empire crushed 

beneath their primitive feet.

Relations with other empires will 

be a constant factor in the game 

and a considerable thorn on your 

side at certain crucial moments. 

There is always a foreign city 

already built in the area where we 

would like to found our new 

capital, there is always an enemy 

unit in a strip of land that leads to 

unexplored regions, preventing our 

units from failing to declare war, 

there is always an opposing nation 

that discovers the atomic bomb 

before us or that starts to build 

spaceships when we have just 

discovered the gunpowder. You 

don't rest on laurels in Civilization, 

and if you do, you better get ready 

to smell the stench of death, 

because someone who wants to 

set our glory bed on fire is always 

there.

Unless, by mastering the military, 

economic, scientific, political and 

social factors of the game with 

incredible skill, we come to build a 

truly powerful empire, but you will 

quickly realize how much difficult it 

is to manage all these things at the 

same time. Even the most powerful 

empire, when attacked wisely, can 

begin to limp. The loss of a city, for 

example, means the loss of military 

production, wealth and scientific 

contribution, but also the 

disruption of the lines of 

communication of our empire, or 

perhaps the longed-for access to 

the ocean.

Exploration is an important theme 

in Civilization, as finding the right 

place to found a city can make a 

big difference, especially if you 

manage to exploit special land, 

which therefore produces more 

than the average, especially if 

properly treated by our trusted 

settlers. Exploration, however, is 

linked, as is the military power, to 

scientific progress. It is not enough 

to invent the trireme ships to be 

able to sail the ocean, so that 

these units must end the shift next 

to the coast or they will be lost at 

sea. It will be necessary to 

discover navigation in order to 

venture into the midst of the water 

regions that separate us from 

lands where our nation can thrive. 

Or at least this is our hope when 

we load settlers and a couple of 

military units onto our walnut 

shell, since at first we don't know 

what's beyond the water, and WE 

don't even know WHERE this 

phantom destination is. We don’t 

even know about its very 

existence. This would happen, of 

course, unless we play on a known 

map, but also there, as our initial 

position and that of our opponents 

is random, we could happily land in 

America only to find out that the 

glorious Russian empire has 

already decorated the continent 

with cities named very differently 

from those that the Pilgrim Fathers 

have taken from their motherland.

Technological advancement is 

therefore an important element of 

the building that we will have to 

raise by accepting the challenge of 

Civilization. The tree of scientific 

discovery is definitely dense and, if 

at the beginning of the game the 

choices may seem small, once 

again it will take little time to face 

typical dilemmas between the 

development of something that 

allows us to improve the conditions 

of the population, such as a new 

form of government or a 

productive process, and the new 

military technology that will finally 

put all enemies under our feet. On 

the other hand, having prosperous 

but unprotected cities is as useless 

as dominating the world and 

having the population at the end of 

its rope.

Planning in time where you want to 

get to is therefore essential, so you 

will need to consult often the 

descriptions of scientific 

discoveries and units. And 

speaking of descriptions, you can't 

help but mention the huge online 

Bugs

Like any software, especially of this 

size, Civilization is not bug-free, but 

the overall care of the product is 

excellent, so much so that errors can 

only be found in particular sequences 

of game events. A very famous 

mistake that is easy to come across is 

what sees the peaceful Indian leader 

Gandhi change his attitude 

dramatically from friendly to 

relentless warmonger. The origin of 

this bug lies in the (simple) 

aggression management system of a 

leader, which is represented by an 

integer between 0 (absolute peace) 

and 255 (total war), evidently an 8-

bit integer. Specific game events 

reduce the aggressiveness of a 

nation's government, and specifically 

the transition to democracy reduces 

the aggressiveness of 2. The 

programmers, however, forgot to 

check the lower threshold of this 

value and Gandhi goes from 1 to -1, a 

negative number that turns into 255 

(since an integer hosts only positive 

numbers), transforming the Indian 

nation into a den of bloody assassins 

who only want to see our cities razed 

to the ground and our population 

passed by the sword. When you say it 

takes one nothing to start a war...



Page 36 of 40 RETROMAGAZINE ENGLISH YEAR 1 ­ ISSUE 0

GAME TESTING

manual. The documentation 

available to the player is not only 

well done, but covers every part of 

the game, and it also provides 

details of every unit, city 

infrastructure or scientific 

discovery that can be accessed. 

Today with Wikipedia and Google 

we are all used to being able to 

access knowledge that exceeds by 

many orders of magnitude what we 

imagined 30 years ago, but in 

1991 “Civilopedia” was a 

monumental work, which 

contributed significantly to that 

impression of immensity that you 

feel playing Civilization.

So you will discover the many 

buildings that can be raised in our 

cities, each with specific 

advantages for productivity or 

social needs. Among these we 

must mention the 21 wonders of 

the world, which, once built in a 

city, bring a global advantage to 

our entire empire. These range 

from the Gardens of Babylon, 

which make happy citizens in every 

city, to the Apollo Program that 

allows space travel and reveals the 

entire map. It is very depressing 

when, two turns after the end of 

the construction of the long-

awaited Pyramids, one of the 

opposing leaders announces to the 

world that they have just finished 

them, forcing us to change running 

plans, usually throwing away shifts 

spent on their production. Military 

units are also very diverse and 

benefit from scientific discoveries. 

Discovering iron working allows us 

to start building bridges but also to 

produce the dreaded Legions, and 

properly exploiting the latest 

discovery of our scientists can be 

the key to the final victory. 

Civilization also allows for quite 

paradoxical situations, when one 

empire finds itself to be remarkably 

advanced if compared to another. 

This rarely reaches extreme levels, 

as weak and underdeveloped 

empires are quickly eaten by the 

most powerful neighbors, but 

sometimes you can see wooden 

catapults facing tanks and when it 

happens the combat system creaks 

a little. Units in fact have attack, 

defense and movement parameters 

that are comparable to other units 

of the same period but not to units 

of different historical periods. A 

catapult has an attack value of 6, 

while an artillery has a defense of 

2. This basically means that you 

can get rid of a robotic vehicle 

armed with ground-to-ground 

missiles by throwing stones with a 

wooden arm. Or a group of 

medieval knights could hold a 

modern city under siege! Anyway, 

as already mentioned, these 

elements are marginal and do not 

affect the gaming experience. It 

will be difficult for your settlers to 

face a German bomber-fighter 

aircraft,    as    Frederick    the    

Great has already conquered you 

as soon as he discovers the 

gunpowder. For 5 years, until 

MicroProse published the beautiful 

sequel, Civilization put the sceptre 

of total command in our hands, 

made us dream of creating empires 

"where the sun never sets" and 

reaching the stars with our 

spaceships, ready to plant our flag 

on a new planet. Thank you Sid 

and Bruce, you have given us years 

of absolute fun, delicate social and 

military decisions, absolute and 

perceptible "immensity"!

by Leonardo Giordani

A large family

In 2018 Firaxis released Civilization 

VI, a testimony that the initial idea 

was brilliant enough to last for 30 

years in the rich video game 

landscape. Obviously we are now 

faced with a product that is 

completely different from a graphical 

and sound point of view, and the 

algorithm behind the game has also 

changed, especially as regards the 

intelligence of the opponents. These 

modern incarnations, however, 

despite the obvious visual adaptation 

and the possibility of exploiting the 

power of today's computers, do not 

deviate in a particular way from the 

spirit of the forefather, who, with the 

poverty of means of time, had already 

given players all the means to fulfill 

their dreams of greatness.

Online Game

Nowadays it is impossible to think of 

a game like Civilization without 

immediately imagining the clutches of 

players facing each other online, but 

in 1991 this possibility was not 

contemplated, also because it would 

have objectively found the favor of a 

few lucky players possessing a 

modem and the budget necessary to 

access the telecommunications 

networks that we can safely call 

primitive compared to what we have 

now. Four years later the landscape 

of telematic access had changed and 

MicroProse released CivNet, a version 

of Civilization that allowed 8 players 

to face each other online or on the 

same computer. This version of the 

game, however, came out too close to 

Civilization II, published the following 

year, and spread little.

OUR FINAL SCORE

» Gameplay 90%
Civilization is a turning point in 

the world of video games, not 

only in the strategic ones.

» Longevity 99%
Thank you Sid and Bruce, you 

have given us years of 

absolute fun, delicate social 

and military decisions, 

absolute and perceptible 

"immensity"!



RETROMAGAZINE ENGLISH YEAR 1 - ISSUE 0 Page 37 of 40

GAME TESTING

In our journey about re-discovering 

textual adventures, whose episodes 

in RetroMagazine are randomly placed 

in time, it’s the moment to talk about 

Magnetic Scrolls and their fantastic 

games. In this article we will briefly 

tell the history of this excellent 

software house and review The Pawn, 

the adventure game that announced 

the whole world the existence of a 

worthy rival of Infocom.

Magnetic Scrolls: the software 
house
In the middle of the 80s, more precisely 

in 1984, Anita Sinclair, Ken Gordon 

and Hugh Steers decided that the 

time had come to challenge Infocom 

(born in 1979) creating, in London, 

a software house for the production 

of text adventures that could compete 

with those of the American company 

both in story-telling, by developing 

new stories with twisted and engaging 

plots, and technically, thanks to an 

extremely advanced parser and a 

design set to give the player as much 

freedom as possible, thus expanding 

the user experience beyond the mere 

goal of the game. The company started 

with a team of eight permanent 

employees and a variable number of 

freelance collaborators, with Sinclair 

as general manager, Gordon as 

technical director and Steers, who 

had the greatest programming skills, 

as chief programmer. The plan was 

to produce games mainly for the 

Sinclair QL, a microcomputer owned 

by Anita, but the release of the Atari 

ST and the Commodore Amiga, with 

their hardware and OS superiority, 

convinced the three founding partners 

to expand their initial objectives and 

increase development efforts to 

support these two platforms as soon 

as possible. The result of their work 

was The Pawn, the first game produced 

by Magnetic Scrolls, developed by 

the 18-year-old Rob Steggles, who 

later became the author of the four 

most  appreciated  adventures  of  the 

company. Like Infocom and in general 

like most of the software houses 

involved in the production of text 

adventure games, the guys at Magnetic 

Scrolls chose the path of creating an 

interpreter (or virtual machine if you 

like, since that’s what it was) allowing 

the execution of games on multiple 

hardware platforms without the need 

for a total rewrite of the game. That 

would prevent, or at least minimize, 

the burden of porting the whole code 

on different platforms, which would 

have been too expensive and time-

consuming. The entire gaming system 

(today we would say game engine) 

was created by Steers and Gordon 

and it had one of the best parsers 

ever seen, pretty comparable to the 

one developed by Infocom. In addition 

to that, graphics and sounds could 

be included to the stories, although 

these additional features were not 

available for all platforms. In early 

versions, programmers compiled the 

game source files with the help of a 

normal text editor, but later there was 

a graphical tool available, produced 

thanks to the joint work of the Sinclair/

Gordon/Steers trio, to speed up the 

production process and allow 

developers to focus more on game 

design than writing code. During its 

period of business activity, Magnetic 

Scrolls developed 8 games (see box).

All these adventure games featured 

a level of difficulty higher than average, 

an excellent parser with a very wide 

vocabulary and very high quality 

graphic illustrations. The brilliant 

career of Magnetic Scrolls ended when 

the public interest shifted to other 

genres of games, graphic adventures 

in the first place. The production of 

text adventures stopped generating 

profits for the survival of the company 

and so the brilliant partners were 

forced to shut down the business. 

The games created by Magnetic Scrolls 

during their time of production are, 

however, still appreciated and played 

today. Moreover  they  are considered 

among the best ever.

THE PAWN
Publisher: Ranbird
Developer: Magnetic 
Scrolls
Year: 1985
Platform: All platforms
Genre: Adventure

Magnetic Scrolls' games

The Pawn, 1985, published by 

Rainbird for Amiga, Amstrad CPC, 

Amstrad PCW, Apple II, Acorn 

Archimedes, Atari ST, Atari 8-bit, 

Commodore 64, MS-DOS, Macin‐

tosh, Sinclair QL and ZX Spectrum

The Guild of Thieves, 1987, pub‐

lished by Rainbird for Amiga, Am‐

strad CPC, Amstrad PCW, Apple 

II, Acorn Archimedes, Atari ST, 

Atari 8-bit, Commodore 64, MS-

DOS, Macintosh and ZX Spectrum

Jinxter, 1987, published by Rain‐

bird for Acorn Archimedes, Amiga, 

Amstrad CPC, Amstrad PCW, Ap‐

ple II, Macintosh, Atari 8-bit, Atari 

ST, Commodore 64, MS-DOS, ZX 

Spectrum

Corruption, 1988, published by 

Rainbird for Amiga, Amstrad CPC, 

Amstrad PCW, Apple II, Acorn 

Archimedes, Atari ST, Commodore 

64, Apple Macintosh, MS-DOS, ZX 

Spectrum

Fish!, 1988, published by Rainbird 

for Amiga, Amstrad PCW, Apple II, 

Acorn Archimedes, Atari ST, Com‐

modore 64, Macintosh, MS-DOS, 

ZX Spectrum

Myth, 1989, published by Rain‐

bird Amiga, Amstrad PCW, Atari 

ST, Commodore 64, MS-DOS, ZX 

Spectrum

Wonderland, 1990, published by 

Virgin Interactive for MS-DOS, 

Acorn Archimedes, Amiga, Atari 

ST

The Legacy: Realm of Terror, 

1993, published by MicroProse 

for MS-DOS systems only. There 

was also a version for Amiga that 

was never completed.



Page 38 of 40 RETROMAGAZINE ENGLISH YEAR 1 ­ ISSUE 0

GAME TESTING

The Pawn
“You wake up on a sunny August morning 
with birds singing, and the air fresh and 
clear. However, your joints are stiff and 
you have not woken up in your bedrooom 
as you wold expected. Trying to recall 
what happened the night before, you 
manage to piece together a few brief 
glimpses to give the following account: 
You were walking home, having just 
done your week's shopping at the 
supermarket, very close you noticed a 
stranger in a white overcoat coming 
toward you. When he got very close you 
noticed that he was wearing glasses 
and had a thick, bushy beard. As he 

passed you he left out a hollow cackling 
laugh and you felt a sharp blow on the 
back of your head. Then you woke up. 
You notice that you are wearing a silver 
wristband which covers your forearm.”

This is how The Pawn, the first and 

most beloved Magnetic Scrolls game, 

begins (the text is a summary of the 

opening paragraph of the game). 

Designed and programmed by Rob 

Steggles, with the support of Steers 

and Gordon, during his summer vacation 

(Steegles was only 18 years old at the 

time), this first work by Magnetic Scrolls 

is appreciated for its fun story, well 

constructed and told. It is also 

remembered for the use of stunning 

(at the time) graphics screens appearing 

during the game and for a high-quality 

parser, easily able to compete with the 

one created by Infocom. The wise use 

of images in text adventures was subtly 

introduced by smaller software houses, 

trying to attract more players. They 

were supposed to be seduced by 

illustrations and perhaps overwhelmed 

by the quality of the plot and the parser, 

as most of these games featured a 

horribly low parser, sometimes quite 

irritant and working unexpectedly. Both 

the Infocom guys, whose motto was 

"a paragraph is worth a thousand 

images”, and those at Magnetic Scrolls 

didn’t like to use graphics in their 

games, convinced that well-written 

text and a robust plot would be more 

than enough to stimulate players and 

get them into the atmosphere of the 

game. In order to release The Pawn, 

however, the publishing label, Rainbird, 

demanded the adoption of pictures 

within the game under penalty of not 

agreeing on the distribution. Although 

strongly upset by this ultimatum, the 

directors of Magnetic Scrolls asked 

Geoff Quilley to develop some pictures 

to go with the plot and when the dynamic 

trio saw the sketches, they totally 

changed their minds about the use of 

the images in their adventure games. 

Quilley presented incredible quality 

drawings, magnificently rendered on 

the powerful Atari ST and Amiga. The 

decision was soon made: instead of 

using pictures only to faithfully show 

the game scenes, a task whish until 

then was left to the text and the 

imagination of the players, they were 

adopted to enrich and enhance the 

final product, more or less like the 

illustrations were used in the great 

classic books. They now were a pleasant 

amusement for the reader/adventurer, 

giving him a few moments of leisure 

from the commitment required by the 

adventure. Quilley's mastery later 

allowed the graphics screens to be 

successfully adopted even on 8-bit 

microcomputers the games were 

released for. This was not the only touch 

of class that distinguished The Pawn 

and all other Magnetic Scrolls games. 

A well-groomed package, an introductory 

novel written by Sinclair, an elegant 

use of humour (British humour, of 

course) and an original help system 

contributed to the wide success of the 

games. And some of them even took a 

well-deserved place in the Olympus of 

the most beautiful textual adventures 

of all time (The Pawn was awarded with 

prizes like the Golden Joystick Awards 

in 1986 for being the best adventure 

game of the year. Wandering around 

the locations that make up the discreetly 

extended world of play and reading the 

novel in the box (which we strongly 

recommend you do before you start 

playing), you will discover that you 

have ended up in Kerovnia, a fantastic 

land in an unspecified time and ruled 

by King Erik, in a crucial moment of its 

history due to social riots. Soon you 

will realize that fulfilling your desire to 

return home is not an easy thing to do. 

In The Pawn, danger is everywhere 

and, although death will not wait for 

you around every corner, the chances 

of ending up in another world (no, not 

your home!) are high enough to advise 

you to save the game every time you 

have a chance to. Moving the first steps 

will not be difficult, either because the 

size of the game map will give you a 

certain degree of freedom before you 

encounter an enigma to solve in order 

to access a new area, or because the 

first riddles you may encounter will not 

be so hard to overcome. In the early 

stages of the game, after about half an 

hour, you will have already met the 

magician shown on the front page of 

the game box and the King of Kerovnia, 

but from now on things will start to get 

much more complex. Although puzzles 

always have a logical solution, solving 

them will not be at all trivial: you will 

have to squeeze your meninges and 

take advantage of the creative use of 

the game parser, sometimes a little 

pedantic. For example (SPOILER ALERT!) 

in the search for a way to get rid of the 

bracelet, when you meet the magician 

intent on flying on a prairie, after 

greeting him and accepting the 

assignment that he offers you, try to 

“show the wristband to Kronos”. The 

magician will tell you that it’s nice. But 

if you “ask Kronos about the wristband”, 

the answer will be completely different 

and definitely more helpful for your 

purposes (or so it will seem). Why set 

such a trap to the player? It is clear 

that if you show the bracelet to someone, 

that is to receive useful information 

about it, or to understand why you are 

wearing it and how to remove it. What 

is the reason to complicate things by 

selecting the way you talk about it with 

other characters? Of course a nice 

exercise of style, useful to show how 

smart the parser is, but honestly an 

unnecessary complication to the 

detriment of the player in our opinion. 

You will find more than one of these 

situations in this adventure game, so 

do not give up if your typed commands 

do not achieve the desired result. If 

you have an intuition that you consider 

highly plausible, try to explain to the 

parser what you intend to do by 

reformulating the sentences, it might 



RETROMAGAZINE ENGLISH YEAR 1 - ISSUE 0 Page 39 of 40

GAME TESTING

work. Beyond these little “youth 

flaws” (it’s a debut game, after all), the 

adventure is absolutely enjoyable and 

engaging. As you move forward in the 

story, it will become very clear why it 

has been named with such a title (“The 

Pawn”). Throughout the game you will 

feel manipulated for unknown purposes, 

which will become a certainty as events 

unfold. The number of locations, objects 

and people as well as the variety of 

possible actions will allow you a high 

degree of freedom within the world of 

this fantasy place, and this will provide 

you with the opportunity to discover 

the many humorous tricks which the 

author has permeated the adventure 

with. For experienced players, who like 

to immerse themselves in the universe 

created by the programmer rather than 

just making the right choices to go on 

with the story to its natural epilogue, 

this is a great value; on the other hand, 

less skilled adventurers could be 

disoriented by such a range of 

possibilities and have a lot of difficulty 

reaching the end of the game. There 

is generally great attention to detail in 

the game, which can lead to different 

consequences depending on what you 

decide to do and how you explained it 

to the game parser. The way you talk 

about the bracelet to Kronos is one 

example, but it's not the only case. If 

for some reason (which we do not wish 

to investigate at all) you think about 

riding around in an adamythic outfit, 

you can do so by asking your alter ego 

to take off your clothes and continue 

the adventure in your underwear (at 

least guessing you wear them). No one 

in the game will be surprised by your 

clothing tastes. If, unfortunately, you 

forget that you are walking around 

dressed only in your bare skin and try 

to cross the snow-capped mountains, 

death by freezing will soon catch you, 

unless you get dressed quickly. This 

kind of attention by the game to how 

you approach every situation and how 

you relate to the other characters, 

magnificently expands the range of 

actions you can try and the different 

ways to solve the puzzles, thus 

increasing the depth and longevity of 

the game. And this is an element not 

easy to develop in a textual adventure.

Conclusions
The Pawn is a classic of the interactive 

fiction and one of the best works of his 

genre. Although it is not a title suitable 

for beginners or to those approaching 

text adventures for the first time, it 

deserves to be played by everyone, 

even overcoming the linguistic difficulty 

(it is only available in English), a feature 

that may not even be considered as a 

flaw. Of course, if you are not familiar 

with English and its nuances, the overall 

difficulty of the game will increase, but 

on the other hand this can be an 

excellent stimulus to increase your 

level of English, both in vocabulary and 

grammar. Many players have learned 

or improved their English thanks to the 

IF (and so do I), driven by the desire 

to play and have fun with this genre. 

Language skills aside, there are many 

features that a newcomer, especially 

if under 30, can discover and appreciate. 

Firstly, the difficulty of the game, linked 

to the intellectual exercise that adventure 

requires, not used artificially, so much 

to extend its longevity, but well 

structured and an integral part of the 

experience and development of the 

plot. The wide range of possibilities 

offered by the plot and the capacity to 

deeply involve the player into the 

adventure, even though basically it 

doesn’t feature advanced graphics, 

audio, video and action, can surprise 

those who are more accustomed to 

seeing spectacular animations or facing 

a game counting on their manual ability 

rather than using their brains and 

lateral thinking. The Pawn's ability to 

entertain and engage players even 

today, after more than 30 years from 

its release, is an excellent example of 

the universality of video gaming and 

this should already convince you to 

give it a try. Well, if my whole praise 

talking had convinced some of you to 

try this title, we are happy to inform 

you that the game is still on sale, along 

with many other Magnetic Scrolls titles. 

It is also available for mobile platforms 

such as iOS and Android and it is even 

possible to play it (legally) online thanks 

to an interpreter written in javascript: 

it only takes a modern web browser 

pointed to: https://msmemorial.if-

legends.org/msa2/msa2.html

Happy adventure to you all!

by Giorgio Balestrieri

» Gameplay 95%
A keyboard and your 

imagination is all you need to 

play. The Pawn is both fun, 

challenging, engaging and 

exciting. Once you start 

playing, it will be hard to stop. 

You will be drawn by the desire 

to see how far it may bring 

you.

» Longevity N/A
It's a text adventure, and you 

know how we usually think 

about the longevity of such a 

work. The Pawn, however, 

somehow features the ability 

to be different every time you 

start it again. You can be sure 

that something new will come 

out of the screen. Finding out 

all the details of the game will 

take you a lot longer than it 

takes to finish it (which is 

already a lot).

OUR FINAL SCORE

https://msmemorial.if-legends.org/msa2/msa2.html


RetroMagazine as an aperiodic fanzine is a 
an entirely ad-free non-profit project and 
falls off any commercial circuit. 

All the published material is produced by 
the respective authors and published thanks 
to their authorization.

RetroMagazine is licensed under the 
terms of:
Attribution-NonCommercial-ShareAlike 
4.0 International (CC BY-NC-SA 4.0)
https://creativecommons.org/licenses/
by-nc-sa/4.0/

This is a human-readable summary of 
(and not a substitute for) the license.

You are free to:
Share — copy and redistribute the 
material in any medium or format
Adapt — remix, transform, and build 
upon the material
The licensor cannot revoke these 
freedoms as long as you follow the 
license terms.

Under the following terms:
Attribution — You must give appropriate 
credit, provide a link to the license, and 
indicate if changes were made. You may 
do so in any reasonable manner, but not 
in any way that suggests the licensor 
endorses you or your use.

NonCommercial — You may not use the 
material for commercial purposes.

ShareAlike — If you remix, transform, or 
build upon the material, you must 
distribute your contributions under the 
same license as the original.

No additional restrictions — You may 
not apply legal terms or technological 
measures that legally restrict others from 
doing anything the license permits.

Disclaimer

We have come to the end of this zeroth issue of the English edition of 

RetroMagazine. We hope you enjoyed it and that our efforts to reach the 

many retrocomputing and retrogaming fans around the world have not been 

in vain. Our magazine in its Italian version is now three years old, but the 

many requests received from all over the planet for an English version 

convinced us to put together this special issue.

Our strengths can be summed up in three key words: fun, passion and 

inclusiveness.

We always have a lot of fun doing all the activities needed to prepare for 

each issue. We follow the best of current retro-events as well as enjoying 

the nostalgia factor of retrocomputing, with articles, reviews, interviews 

and special columns on a variety of subjects, old and new. What drives us 

and gives us the energy to work on the magazine is the passion for our old 

beloved home computers and consoles, for the games we loved as kids and 

for the long hours we spent learning how to code.

Last but not least this is a multi-platform magazine and we like to stay 

inclusive and keep all the doors open for external contributions. Back in the 

'80s and the '90s we used to split into as many hostile factions as there 

were 8- and 16-bit incarnations of the computers and consoles that each 

of us had bought and loved. Harsh rivalry was the order of the day. Today 

we may have grown up but still some of these rivalries remain. Now we 

believe that the fun and the passion for our machines are (please forgive 

the loaded term) “contagious” and that everyone can and should enjoy them.

And that's why we have borrowed the motto of the International Chess 

Federation (“Gens Una Sumus” – we are one people). It means that we’d 

like to address to you, new readers of RetroMagazine, an invitation to 

collaborate. We want to make RetroMagazine English an effective meeting 

point for all retrocomputing and retrogaming enthusiasts as well as an 

increasingly interesting and exciting read!

So we look forward for your comments and, if you’re interested, your concrete 

contributions. And don’t hesitate to get in touch with us and propose your 

ideas, articles and game reviews.

David La Monaca (Cercamon)

Our contacts are:

Email - retromagazine.redazione@gmail.com

Facebook - https://www.facebook.com/RetroMagazine-2005584959715273/

Gens Una Sumus or…
let's have some fun with our common passion!

RetroMagazine
Year 1  - Issue 0

Chief Editor
Francesco Fiorentini

Managing Editor
David La Monaca (Cercamon)

MAY 2020

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.facebook.com/RetroMagazine-2005584959715273/

